首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过卷积神经网络和长短期记忆网络进行多模型结合,实现动态手势识别分类建模,并使用数据增强算法增加数据的多样性,通过差分特征融合改进网络。7种动态手势动作识别分类的实验结果显示,使用数据增强算法增加数据的多样性后,结合模型的识别率最佳可提升286%;通过差分算法改进网络,序列间差分特征融合模型识别率达到8381%,维度差分特征融合模型识别率达到8762%。表明多模型结合可解决单一模型的局限性,处理更加复杂的动态手势分类问题,两种不同形式的差分特征融合改进都可提升动态手势动作的识别率,从而验证了所设计的差分特征融合改进的动态手势识别分类网络模型的有效性和可行性。  相似文献   

2.
3.
提出一种基于Laguerre正交基前向神经网络的动态手势识别方法.首先根据多项式逼近和矩阵理论,构造了一种以Laguerre正交多项式作为隐含层神经元激励函数的多输入、多输出三层前向神经网络模型,在网络权值迭代计算公式基础上推出一种基于伪逆的直接计算网络权值方法,避免求取权值的反复迭代过程;提出一种快速的基于颜色的指尖...  相似文献   

4.
为了提高手势识别的准确率,提出一种基于深度卷积神经网络和支持向量机的手势识别算法;将包含手势的图像进行手掌轮廓分割及手指关节特征提取,经过去噪后获得准确的手势图像,然后通过卷积与池化获得手势特征样本,采用神经网络算法对输入特征样本进行训练,并对全连接层各节点的输出结果进行支持向量机多元分类,从而获得手势识别结果;在差异化设置条件下,通过对比手势识别的平均准确率和识别时间,可获得最优的卷积核尺寸及池化方法。仿真实验结果表明,相比其他3种识别算法,所提出的算法具有更优的识别准确率。  相似文献   

5.
基于神经网络的手势识别技术研究   总被引:1,自引:0,他引:1  
以数据手套为基础,分析了手形的几何关系,建立了虚拟手的模型,由数据手套的数据接口获取各指节的曲伸角度,建立手势标准样本库,并提出了基于BP神经网络的手势识别方法,用手势标准样本加以训练,使其具备识别手势的功能,并利用VC 编程实现BP神经网络,用Matlab验证实验结果的正确性.  相似文献   

6.
针对动态手势在时间尺度上的多变性和复杂性,提出了一种动态手势识别框架.该框架利用时间序列上提取的手势轮廓构造动态手势轮廓图像,获得不同动态手势在不同时间尺度下其轮廓图像的均值图像和方差图像,并将这些图像用于构成动态手势轮廓模型库,在此模型库基础上,利用相关信息方法和改进的动态时间规整方法完成动态手势的识别.实验结果表明,文中提出的动态手势轮廓模型对不同时间尺度的动态手势具有较强的鲁棒性,改进的动态时间规整方法较传统方法具有更高的识别率.  相似文献   

7.
在类肤色的复杂背景下,基于肤色检测的动态手势识别会因肤色干扰导致识别效率较低。提出了一种基于YCbCr颜色空间的改进三帧差分法的动态手势识别方法。首先利用改进的三帧差分法对动态手势进行分割,有效去除类肤色背景;然后根据人体肤色在YCbCr颜色空间中的聚类效果,采用基于椭圆模型的肤色检测方法有效去除非肤色背景,分割出手势区域。通过双特征提取,有效去除大范围的肤色背景,最终得到完整的手势;最后利用BP神经网络较强的自学习能力,对分割的动态手势进行检测识别。实验结果表明,此方法在应对环境变化时具有较好的实时性和抗干扰能力,拥有较高的识别率。  相似文献   

8.
传统手势识别方法需要人工选取特征,选取的特征往往很难适应手势的多变性,从而极大地影响了手势的识别率;提出了一种基于肤色特征和卷积神经网络的手势识别方法;首先采用椭圆肤色模型对复杂背景下的手势样本进行分割,将分割出的手势区域进行二值化和归一化处理,然后构建了一种卷积神经网络对处理过的手势样本进行迭代训练,提取出各类手势关键的高维特征,进而得出手势识别模型;通过该方法训练出的手势模型能够自主地对给定的手势图像进行特征提取和手势分类;实验表明:该手势识别方法在测试集上具有较高的识别率;在现实场景的测试中,该方法也取得了良好的手势识别效果,且实时性和鲁棒性较好。  相似文献   

9.
提出一种动态手势识别算法,将动态手势识别问题转换为轨迹识别间题.首先以SOM算法作为分类器提取手势特征,将多维手势信息投影到二维平面中,根据每帧的顺序产生一平面轨迹,将产生的平面轨迹输人到改进的ART网络进行识别.实验结果表明,该算法用于动态手势识别是可行的且性能稳定.  相似文献   

10.
针对毫米波高分辨率雷达一维距离像目标识别的多类分类问题.基于局部线性嵌入(Locally Linear Embedding,LLE)算法思想,考虑样本与其所在低维流形之间的关系,提出一种多类分类算法.该算法先确定样本所在低维流形的结构,然后通过比较未知样本与各类已知样本流形间的关系来分类.将其应用于毫米波高分辨率雷达一维距离像目标识别,实验结果表明,该算法能够有效地进行分类。性能优于其他常用多类分类算法.且对输入参数不敏感.  相似文献   

11.
文章提出一种将运动和肤色特征相融合的多线索识别方法,利用差分运动检测降低复杂背景干扰,利用肤色在HSV空间中的聚类特性,采用多高斯模型,对每一个输入视频,将前50帧作为学习样本,在线学习出该视频的肤色分类器,解决了泛化性能低的问题;利用手势固有形状特征进行静态手势分割,采用基于仿射变换的块匹配法对动态手势进行跟踪。结果表明该算法能够较好地适应不同光照及复杂背景,同时满足实时要求。  相似文献   

12.
小波神经网络的毫米波雷达目标一维距离像识别   总被引:5,自引:0,他引:5  
将小波变换和反向传播神经网络理论结合,设计一种小波神经网络结构。由于小波变换在时间和频率空间所具有良好的定位特性,使小波神经网络可对输入输出数据进行多分辨的学习训练。介绍神经网络的数学框架和该网络的学习算法。根据毫米法频率步进雷达目标一维距离像所给出的信息,将所提出的小波神经网络用于3种实际雷达目标的识别。实验结果表明,小波神经网络收敛速度快、识别率高。  相似文献   

13.
目前基于手势交互的系统应用越来越多,但都是简单的利用手势操作鼠标进行交互,没有向系统进行文字输入的功能。利用盲人字母手势作为输入手势,采用微软的体感设备Kinect获取深度图像,对其进行手势分割,再利用SIFT提取特征,得到手势字母,利用拼音输入法,提供了一种向系统输入汉字的功能。  相似文献   

14.
提出了基于Kinect传感器深度信息的动态手势识别方法,在预处理阶段通过OpenCV快速跟踪手部,有效分割手势.为改进动态手势轨迹的提取和分类,引入隐马尔可夫模型(HMM)对手势轨迹进行训练和识别.实验结果表明,基于HMM的识别方法对具有时空特性的动态手势有很高的识别率,在不同光照和复杂背景下有鲁棒性的结果.  相似文献   

15.
现有低分辨雷达目标识别通常采用先特征提取、再进行目标分类的两步识别算法,存在识别率难以提高和方法泛化性不足的问题,因此提出了一种基于卷积神经网络(CNN)的低分辨雷达目标一步识别算法。该算法直接将采样数据作为输入,利用设计的一维CNN,通过卷积池化等操作自动获取数据深层本质特征,无需特征提取,实现对目标的一步识别。仿真实验结果表明:基于CNN的低分辨雷达目标一步识别方法的识别率较传统基于提取特征的两步识别方法提高了10.31%,识别时间较传统两步识别方法减少了0.142 s,充分证明了一步识别方法的有效性,为低分辨雷达目标识别问题提供了新的解决途径。  相似文献   

16.
针对车体多自由度振动对基于激光图像技术的钢轨廓形动态测量所造成的影响,提出一种新颖的钢轨测量廓形畸变识别方法.首先根据钢轨廓形特征和畸变前后的几何差异,设计了一种三通道且参数独立的卷积神经网络结构用于畸变识别,其输入分别为原始廓形图像的降采样、轨鄂点周边裁剪图像和轨底点周边裁剪图像.为了有效训练该网络,通过采集大量正常廓形图像和畸变廓形图像来构建带标签训练样本库.利用训练后的卷积神经网络,在室内钢轨廓形动态测量平台上进行大量的测量廓形畸变识别实验.实验结果表明本文识别方法的精度和查全率均能达到92%以上,验证了该方法的有效性和可靠性.  相似文献   

17.
现有基于传统平面电磁波雷达的人体目标识别技术能够实现对步态差异较大的人体目标的分类识别,但在步态精细识别方面面临较大困难。将涡旋电磁波雷达应用于人体步态识别中,尝试通过发射携带有轨道角动量的单频涡旋电磁波来增加雷达回波中的目标信息量,以提高人体步态精细识别能力。首先建立了人体目标的涡旋电磁波雷达回波模型,并仿真生成了3种步态下的回波数据集;然后通过将回波变换到基频,获得目标线多普勒和角多普勒混合信息并用时频图表征,最终将时频图输入到卷积神经网络模型中获得分类结果。仿真实验表明:相比于传统平面电磁波雷达,使用涡旋电磁波可以提升人体步态精细识别能力。  相似文献   

18.
汤哲君 《科技资讯》2014,(9):48+50-48,50
本文主要对静态手势识别的技术存在的各种方法进行了相应的分析与探讨,而在这个基础之上实现与设计了一套先进的静态手势识别系统。而该系统主要分为手势的分类、图像的预处理、分类器的设计与样本的训练以及特征的提取四个模块。而该系用在运行时,首先从文件夹中读取图像部分,其次在经过图像的预处理模块得到手势的轮廓图像以及二值图像,最后在对轮廓图像与二值图像这两幅图对手势进行相应的特征提取,并且采用贝叶斯分类器对这个手势进行分类识别。  相似文献   

19.
为提高利用表面肌电信号(sEMG:Surface Electromyography)进行手势识别的准确率并解决其受不同提取特征影响的问题,提出了一种基于多路卷积神经网络(MB-CNN:Multi-Branch Convolutional Neural Networks)的手势识别方法.首先,使用MYO手环采集8种不同手...  相似文献   

20.
基于光流及耦合隐马尔可夫模型的动态手势识别   总被引:2,自引:0,他引:2  
基于块的相关算法来计算光流,并利用光流跟踪双手的运动.双手的运动轨迹取相邻两点的速度向量,经8方向链码量化后作为观察向量.和直接利用位置信息相比较,提高了识别的鲁棒性.采用耦合隐马尔可夫模型来识别双手动态手势,提出并实现了最大后验概率的训练.对6个双手动态手势的试验表明,耦合隐马尔可夫模型(CHMM)比常规隐马尔可夫模型(HMM)能更有效地对双手动态手势建模.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号