首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
2.
NAK is an IkappaB kinase-activating kinase   总被引:13,自引:0,他引:13  
  相似文献   

3.
Inhibition of JNK activation through NF-kappaB target genes.   总被引:26,自引:0,他引:26  
G Tang  Y Minemoto  B Dibling  N H Purcell  Z Li  M Karin  A Lin 《Nature》2001,414(6861):313-317
  相似文献   

4.
IKKalpha controls formation of the epidermis independently of NF-kappaB   总被引:16,自引:0,他引:16  
Hu Y  Baud V  Oga T  Kim KI  Yoshida K  Karin M 《Nature》2001,410(6829):710-714
The IKKalpha and IKKbeta catalytic subunits of IkappaB kinase (IKK) share 51% amino-acid identity and similar biochemical activities: they both phosphorylate IkappaB proteins at serines that trigger their degradation. IKKalpha and IKKbeta differ, however, in their physiological functions. IKKbeta and the IKKgamma/NEMO regulatory subunit are required for activating NF-kappaB by pro-inflammatory stimuli and preventing apoptosis induced by tumour necrosis factor-alpha (refs 5,6,7,8,9,10,11). IKKalpha is dispensable for these functions, but is essential for developing the epidermis and its derivatives. The mammalian epidermis is composed of the basal, spinous, granular and cornified layers. Only basal keratinocytes can proliferate and give rise to differentiated derivatives, which on full maturation undergo enucleation to generate the cornified layer. Curiously, keratinocyte-specific inhibition of NF-kappaB, as in Ikkalpha-/- mice, results in epidermal thickening but does not block terminal differentiation. It has been proposed that the epidermal defect in Ikkalpha-/- mice may be due to the failed activation of NF-kappaB. Here we show that the unique function of IKKalpha in control of keratinocyte differentiation is not exerted through its IkappaB kinase activity or through NF-kappaB. Instead, IKKalpha controls production of a soluble factor that induces keratinocyte differentiation.  相似文献   

5.
6.
7.
8.
9.
10.
The I kappa B kinase (IKK), consisting of the IKK1 and IKK2 catalytic subunits and the NEMO (also known as IKK gamma) regulatory subunit, phosphorylates I kappa B proteins, targeting them for degradation and thus inducing activation of NF-kappa B (reviewed in refs 1, 2). IKK2 and NEMO are necessary for NF-kappa B activation through pro-inflammatory signals. IKK1 seems to be dispensable for this function but controls epidermal differentiation independently of NF-kappa B. Previous studies suggested that NF-kappa B has a function in the growth regulation of epidermal keratinocytes. Mice lacking RelB or I kappa B alpha, as well as both mice and humans with heterozygous NEMO mutations, develop skin lesions. However, the function of NF-kappa B in the epidermis remains unclear. Here we used Cre/loxP-mediated gene targeting to investigate the function of IKK2 specifically in epidermal keratinocytes. IKK2 deficiency inhibits NF-kappa B activation, but does not lead to cell-autonomous hyperproliferation or impaired differentiation of keratinocytes. Mice with epidermis-specific deletion of IKK2 develop a severe inflammatory skin disease, which is caused by a tumour necrosis factor-mediated, alpha beta T-cell-independent inflammatory response that develops in the skin shortly after birth. Our results suggest that the critical function of IKK2-mediated NF-kappa B activity in epidermal keratinocytes is to regulate mechanisms that maintain the immune homeostasis of the skin.  相似文献   

11.
TAK1 is a ubiquitin-dependent kinase of MKK and IKK.   总被引:72,自引:0,他引:72  
C Wang  L Deng  M Hong  G R Akkaraju  J Inoue  Z J Chen 《Nature》2001,412(6844):346-351
TRAF6 is a signal transducer that activates IkappaB kinase (IKK) and Jun amino-terminal kinase (JNK) in response to pro-inflammatory mediators such as interleukin-1 (IL-1) and lipopolysaccharides (LPS). IKK activation by TRAF6 requires two intermediary factors, TRAF6-regulated IKK activator 1 (TRIKA1) and TRIKA2 (ref. 5). TRIKA1 is a dimeric ubiquitin-conjugating enzyme complex composed of Ubc13 and Uev1A (or the functionally equivalent Mms2). This Ubc complex, together with TRAF6, catalyses the formation of a Lys 63 (K63)-linked polyubiquitin chain that mediates IKK activation through a unique proteasome-independent mechanism. Here we report the purification and identification of TRIKA2, which is composed of TAK1, TAB1 and TAB2, a protein kinase complex previously implicated in IKK activation through an unknown mechanism. We find that the TAK1 kinase complex phosphorylates and activates IKK in a manner that depends on TRAF6 and Ubc13-Uev1A. Moreover, the activity of TAK1 to phosphorylate MKK6, which activates the JNK-p38 kinase pathway, is directly regulated by K63-linked polyubiquitination. We also provide evidence that TRAF6 is conjugated by the K63 polyubiquitin chains. These results indicate that ubiquitination has an important regulatory role in stress response pathways, including those of IKK and JNK.  相似文献   

12.
NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling.   总被引:56,自引:0,他引:56  
J A Romashkova  S S Makarov 《Nature》1999,401(6748):86-90
  相似文献   

13.
14.
15.
P K Moore  J R Hoult 《Nature》1980,288(5788):271-273
We have shown recently that adaptive changes in the apparent amount of enzymes which synthesize and inactivate prostaglandins (PGs) occur in a reciprocal manner (see accompanying paper and refs 2-4). For example, PG synthetase activity in several rat organs is reduced but that of PG-metabolizing enzymes ('prostaglandinases') is increased after treatment with anti-inflammatory steroids. In view of recent reports that the synthesis of PG-like substances may be influenced by plasma factors, we wondered whether our findings may be explained in whole or in part by the presence in varying amounts of substances which affect PG synthesis and inactivation in opposite directions. We show here that rat plasma contains a protein factor(s) which inhibits the synthesis of PGs and enhances their enzymatic breakdown in vitro and which we provisionally call prostaglandin 'reciprocal coupling factor' (RCF). Furthermore, RCF is rapidly released in response to anti-inflammatory steroids and its levels are altered in the two model pathophysiological states so far investigated.  相似文献   

16.
17.
After apoptosis, phagocytes prevent inflammation and tissue damage by the uptake and removal of dead cells. In addition, apoptotic cells evoke an anti-inflammatory response through macrophages. We have previously shown that there is intense lymphocyte apoptosis in an experimental model of Chagas' disease, a debilitating cardiac illness caused by the protozoan Trypanosoma cruzi. Here we show that the interaction of apoptotic, but not necrotic T lymphocytes with macrophages infected with T. cruzi fuels parasite growth in a manner dependent on prostaglandins, transforming growth factor-beta (TGF-beta) and polyamine biosynthesis. We show that the vitronectin receptor is critical, in both apoptotic-cell cytoadherence and the induction of prostaglandin E2/TGF-beta release and ornithine decarboxylase activity in macrophages. A single injection of apoptotic cells in infected mice increases parasitaemia, whereas treatment with cyclooxygenase inhibitors almost completely ablates it in vivo. These results suggest that continual lymphocyte apoptosis and phagocytosis of apoptotic cells by macrophages have a role in parasite persistence in the host, and that cyclooxygenase inhibitors have potential therapeutic application in the control of parasite replication and spread in Chagas' disease.  相似文献   

18.
19.
20.
E De Smaele  F Zazzeroni  S Papa  D U Nguyen  R Jin  J Jones  R Cong  G Franzoso 《Nature》2001,414(6861):308-313
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号