首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以TiO_2/钙钛矿(PVSK)/P3HT的n-i-p型钙钛矿电池作为研究对象,研究了TiO_2薄膜退火温度对TiO_2薄膜的结晶性、基于此的钙钛矿薄膜的形貌以及光伏器件性能的影响,比较了P3HT的掺杂以及不同批次P3HT材料对钙钛矿太阳能电池器件性能的影响。结果表明:TiO_2薄膜的退火工艺及P3HT的批次对器件性能影响较大。TiO_2薄膜的制备工艺设为退火温度为300℃,退火时间为45min,提高TiO_2的退火温度到500℃,钙钛矿太阳能电池的效率可提高到11.27%.通过优化钙钛矿薄膜厚度为190nm,制备得到光电转换效率为6.77%的钙钛矿薄膜光伏电池。基于低温TiO_2为电子传输层、掺杂P3HT为空穴传输层的器件性能为开路电压VOC=0.98V,短路电流J_(SC)=19.94mA/cm~2,填充因子f_F=0.42,转换效率η(PCE)=8.18%.TiO_2电子传输层和P3HT空穴传输层的系统优化对制备高性能n-i-p结构钙钛矿电池具有重要意义。  相似文献   

2.
有机-无机杂化钙钛矿太阳能电池由于其高的能量转化效率、低的制造成本而引起广泛的关注.本文中采用两步旋涂法,通过改变MAI的转速来制备高性能钙钛矿太阳能电池.研究发现,通过改变MAI的转速可以调控PbI_2的残余量,适度残留的PbI_2可减少电子空穴复合,提高电池光电性能,电池能量转化效率达到15.90%(在一个模拟太阳AM 1.5G光照下),且具有较好稳定性.但过量的PbI_2的残余会影响钙钛矿太阳能电池短路电流,降低电池光电转换效率.  相似文献   

3.
采用AMPS-1D软件对以CH_3NH_3PbI_3材料为活性层,ZnO为电子缓冲层,Cu_2O为空穴缓冲层的n-i-p钙钛矿太阳能性能进行模拟优化.探讨了活性层厚度、空穴缓冲层厚度以及温度对钙钛矿太阳能电池性能的影响.优化后的钙钛矿太阳能电池器件参数为CH_3NH_3PbI_3厚度500 nm、ZnO厚度100 nm、Cu_2O厚度50 nm,此时钙钛矿太阳能电池V_(oc)=0.891 V,J_(sc)=22.813 mA/cm~2,FF=0.793,E_(ff)=16.12%.  相似文献   

4.
钙钛矿太阳能电池是近5年太阳能转化利用领域的研究热点,受到国内外研究者的广泛关注.ABX3钙钛矿不但具有快速传递空穴和电子的能力,而且具有强而宽的可见光吸收性能.介观和平面结构钙钛矿薄膜电池是并重发展的钙钛矿太阳能电池.其小于1!m钙钛矿光活性层使得器件对钙钛矿层的结晶度和成膜性有着较高的要求.通过控制钙钛矿的结晶方式和质量来提高膜的性能就成为了提高电池光电转化效率的重要方式之一.第一部分综述了各种制备条件下利用一步法和两步法合成ABX3太阳能电池钙钛矿薄膜.进一步通过提高钙钛矿材料的晶体质量,将钙钛矿太阳能电池的光电转化效率从3.8%提高到20%.此外,和钙钛矿薄膜相比,钙钛矿大晶体不但具有较长的载流子传输路径,而且结构更加完整,更有利排除其他因素的干扰,增进对钙钛矿结构的深入解析.因此第二部分重点介绍了钙钛矿单晶的性能和制备方法,并对其在太阳能电池和光电探测器中的应用做了初步展望.  相似文献   

5.
引入一种典型的p型半导体材料CuPc,采用反式钙钛矿太阳能电池结构,利用热蒸发沉积方法将其作为电池的空穴传输层,在低温条件下制备电池器件.对不同厚度CuPc膜对钙钛矿电池性能的影响进行了优化,采用电流-电压测试、扫描电镜、原子力显微镜和X-射线衍射等方法分析了电池的光电性能和薄膜质量.研究结果表明:热蒸发沉积的CuPc层具有良好的平整性和覆盖性,当其厚度为10 nm时,器件在刚性基底上取得了15.37%的最高光电转化效率,在柔性基底上取得了12.66%的最高光电转化效率.该电池制备过程简单、成本低且重复性高,为进一步制备大面积、高效率以及柔性化的钙钛矿太阳能电池提供了参考.  相似文献   

6.
一种基于钙钛矿结构碘铅甲胺薄膜太阳能电池由于成本低、光电效率高而成为研究热点.本文介绍一种反溶剂两步法制备平整均一钙钛矿薄膜太阳能电池的新工艺,即在旋涂碘化铅的N,N-二甲基甲酰胺(DMF)溶液时立刻滴加反溶剂氯苯,从而促进结晶.对器件和薄膜的分析显示该技术在旋涂时改变了钙钛矿成核和晶体生长动力学,其有利于制备出平整均一的钙钛矿薄膜.利用该方法制备的固态介孔结构太阳能电池,其效率达到了12.081%(在标准太阳光条件下测试),且电池的工艺重复性明显提升.  相似文献   

7.
目前,钙钛矿太阳能电池(perovskite solar cell, PSC)的效率(25.8%)已经可以与硅基太阳能电池相媲美,但是长期稳定性不高是其开展商业化应用亟需解决的问题之一.电化学聚合作为一种制备电活性导电聚合物薄膜的方法,可以有效降低材料和器件制备的成本;同时,化学交联的电聚合薄膜具有较好的稳定性,能有效提高器件的稳定性.总结了将交联的电聚合薄膜作为空穴传输层(hole transporting layer, HTL)或电子传输层(electron transporting layer, ETL)来开发稳定和高效的钙钛矿太阳能电池,并论述了电聚合薄膜在钙钛矿太阳能电池未来的研究重点.  相似文献   

8.
采用一种简便的两步连续沉积新工艺,成功制备出较纯相的CH_3NH_3PbI_3钙钛矿薄膜,考查了退火过程中升温速率对钙钛矿薄膜成膜质量及其与TiO_2薄膜形成平面异质结光伏性能的影响.结果表明,恰当选择升温速率对钙钛矿薄膜的形貌、致密性以及晶粒尺寸等参数的优化至关重要;当调控升温速率为3℃·min~(-1)时,可获得表面平整、平均晶粒尺寸较大、结构致密的钙钛矿薄膜.该薄膜具有明显改善光吸收特性和载流子抽取效率,进而使其组成的FTO/TiO_2/CH_3NH_3PbI_3/P3HT/Au钙钛矿平面异质结太阳能电池的光电转换效率提高至5.95%.  相似文献   

9.
卤化物钙钛矿因为优异的光电性能和溶液法低成本的制备工艺获得了广泛的关注,并取得了飞速的发展。然而,钙钛矿薄膜仍然存在着大面积、高复现性和精准化学计量比制备难以实现等问题,阻碍了其商业化。本文介绍了一种液体介质退火(liquid medium annealing, LMA)方法。该方法选取高热导率、低黏度的苯甲醚制备了一个稳定的热处理液体环境,可实现钙钛矿薄膜的全方位加热,进而调节钙钛矿薄膜的生长。苯甲醚液体介质可轻易萃取钙钛矿薄膜中的残余溶剂(例如DMSO等),抑制钙钛矿中有机组分和卤族元素的挥发,避免周围环境中水、氧等在热处理过程中对钙钛矿薄膜的破坏;进而形成低缺陷密度、理想化学计量比、高均匀性、高复现性和较少的环境影响的高质量钙钛矿薄膜。采用该方案制备钙钛矿太阳能电池展现了良好的光电性能和复现性,当面积为0.08 cm2时电池的光电转换效率超过24.04%,当面积为1 cm2时电池的光电转换效率超过23.15%,并且平均效率大于23%。  相似文献   

10.
<正>太阳能电池是一种把光能转换成电能的装置,光电转化效率的高低是衡量其性能的重要指标之一。与传统硅基太阳能电池相比,钙钛矿太阳能电池因其效率较高、成本较低而成为研究热点。目前钙钛矿太阳能电池材料大多基于重金属铅的铅基钙钛矿,带来的环境问题限制了其进一步应用;而锡基钙钛矿具有无毒、  相似文献   

11.
CH3NH3PbI3(MAPbI3)钙钛矿电池的能量转换效率与钙钛矿薄膜质量密切相关。为了获得高质量的钙钛矿薄膜,通过优化薄膜制备方法和工艺流程,发现绿色反溶剂乙酸丙酯和丙二醇甲醚能促进PbI2粒子的成核,提供CH3NH3PbI3钙钛矿晶体的异相成核位点,从而促进钙钛矿晶体的快速生长。研究表明,与常用的有毒溶剂氯苯处理的钙钛矿薄膜相比,通过乙酸丙酯和丙二醇甲醚处理的薄膜晶粒较大,均方根值较低,表面粗糙度获得较大优化,可以获得晶粒尺寸均匀、接近钙钛矿载流子扩散长度的全覆盖钙钛矿薄膜。测试不同处理条件下的器件性能发现,与氯苯处理的CH3NH3PbI3钙钛矿太阳能电池(能量转换效率为17.86%)相比,绿色反溶剂丙二醇甲醚处理的器件的最佳效率为21.60%,提高近21%,该实验结果对今后获得环境友好的高质量钙钛矿型太阳能电池具有一定的参考价值和指导意义。  相似文献   

12.
为了提高光生电子在半导体纳晶薄膜的输运速度,在导电玻璃基底上通过先沉积种子层、再生长ZnO薄膜的方法,制备了结构均匀、垂直基底的ZnO纳米棒.采用溶液法并经硫化在ZnO纳晶薄膜上制备铜锌锡硫(CZTS)薄膜,分别以聚噻吩和铜为空穴传输层和对电极组装倒序结构CZTS薄膜太阳能电池.通过改变ZnO纳米薄膜的微观形貌,研究用于电子传输的纳晶薄膜的微观结构对倒序结构CZTS薄膜光电性能的影响.实验结果表明:与ZnO纳米颗粒相比,由于Zn O纳米棒有利于CZTS吸收层电子空穴的分离和光生电子在ZnO纳晶薄膜内的输运,减少光生电子和空穴的复合,倒序CZTS太阳能电池的光电转换效率从0.04%提高到0.31%.  相似文献   

13.
氧化锌(ZnO)材料具有良好导电性、光透性和稳定性,在光电器件中具有重要用途.利用AMPS-1D探究ZnO作为缓冲层对有机太阳能电池性能的影响.研究发现:添加ZnO缓冲层的有机太阳能电池开路电压、光电转化效率等性能有显著的提高; 电子-空穴产生率和空穴电流密度随着ZnO薄膜厚度增加而减小,而电荷态密度和电子电流密度随着ZnO薄膜厚度增加而增大.  相似文献   

14.
韩飞  王玲玲  林媛  杨蕾  王志成  李晖 《江西科学》2022,40(1):140-147
虽然目前钙钛矿太阳能电池在效率和器件稳定性方面取得了一定突破,但是由于受到电子传输层的影响,其效率仍低于理论值且器件稳定性仍有提高的空间。系统介绍了典型的钙钛矿太阳能电池结构以及无机/有机电子传输材料各自的优缺点,并结合器件效率和稳定性梳理了单层、双层以及三层电子传输层钙钛矿太阳能电池的研究进展,最后对于合理设计电子传输层材料以兼顾钙钛矿太阳能电池的光电性能和稳定性提出了展望,以期为进一步提升钙钛矿太阳能电池性能提供借鉴。  相似文献   

15.
以有机小分子浴铜灵(BCP)作为缓冲层,引入钙钛矿太阳能电池的电子传输层与阴极之间,研究其对钙钛矿太阳能电池的能量转换效率及载流子的传输特性的影响。结果表明,相对于无BCP缓冲层的钙钛矿太阳能电池,器件的最高能量转换效率由9.67%提高到13.06%。BCP缓冲层的引入,降低了电荷传递电阻,提高了阴极的电子收集能力,可增强钙钛矿太阳能电池的光伏性能。  相似文献   

16.
利用一种半透明非晶硅薄膜太阳能电池采用高导电性能的透明银(Ag)薄膜和TCO薄膜组成透明的背电极代替了普通的不透明铝背电极,通过ZnO/TiO_2薄膜组成复合增透膜提升入射光能,弥补透明背电极的背反射减弱问题。实验采用磁控溅射法制备厚度为10~15 nm的银薄膜与200~300 nm厚度AZO薄膜为透明背电极,采用厚度为65 nm的ZnO薄膜和50 nm的TiO_2薄膜为增透膜,制备的电池样品平均输出功率为39.76 W,透光率为20.17%,对比相同电池工艺的传统半透明非晶硅薄膜太阳能电池组件,有效地减少了光损失,提高了电导率。  相似文献   

17.
提出一种以常温紫外固化纳米压印技术实现定制化微结构TiO_2纳米晶岛薄膜制备的工艺,用于制备垂直于透明导电基底的TiO_2薄膜光阳极.混合TiO_2粉体、分散剂、乳化剂、酒精和光固化树脂等,制备可紫外光固化的TiO_2溶胶,并经步进压印形成宽度为3μm的具有离散纳米晶岛微结构的薄膜,经保压复型优化压印工艺后处理,保证了离散纳米晶岛微结构的高保真度.经600℃烧结去除薄膜中的掺杂物,退火至450℃后获得了定制化微特征的锐钛矿型TiO_2半导体薄膜.在N719染料敏化条件下,制备出了定制化微结构光阳极的染料敏化太阳能电池.AM1.5(0.1w/cm~2)光照条件下的测试实验结果表明,该电池的光电转化效率可达2.7%.此工艺有望应用于制备高稳定性固态或准固态电解质染料敏化太阳能电池.  相似文献   

18.
在钙钛矿前驱体溶液中加入添加剂,是改善钙钛矿薄膜质量、提高钙钛矿太阳能电池性能的重要手段。该研究采用氯化铷(RbCl)作为添加剂,通过扫描电子显微图像、 X射线衍射图谱、光致发光光谱等表征手段,研究了不同比例添加RbCl对钙钛矿薄膜形貌与结构的影响,并通过外量子效率测试等方法,比较了不同比例RbCl添加后的钙钛矿太阳能电池器件性能。结果表明:RbCl的添加有利于引导钙钛矿晶粒生长,增大晶粒尺度,形成致密薄膜,从而抑制界面处载流子复合。适量添加RbCl后,钙钛矿太阳能电池的光电转化效率从18.88%提升到20.06%,开路电压、短路电流密度和填充因子等参数均显著提高,钙钛矿太阳能电池性能得到明显改善。  相似文献   

19.
为了提高钙钛矿太阳能电池的光电转化效率,在太阳能电池的电子传输层(Ti O2)和光吸收层(CH3NH3Pb I3)间掺入一层氧化石墨烯(GO)薄膜.通过扫描电子显微镜、X线衍射和紫外-可见分光光度计对钙钛矿太阳能电池的形貌和元素进行表征,利用介电-频谱测试仪和太阳能电池I-V测试仪分别对钙钛矿太阳能电池的介电性能和光电性能进行分析.实验结果表明:对比掺杂GO前后钙钛矿太阳能电池的光电性能,样品对紫外-可见光的吸收明显提升,介电损耗减小,模拟太阳光光照下光电流密度明显提高,达到15.15m A/cm2,开路电压达到0.537 V.实验表明掺入GO后,钙钛矿太阳能电池的光电性能显著提高.  相似文献   

20.
目的利用水热法制备得到的TiO_2纳米管粉末制备柔性TiO_2复合薄膜电极,提升电池的光电性能.方法利用水热法制备TiO_2纳米管,控制TiO_2纳米管水热合成时间、温度两个重要参数,通过掺杂不同TiO_2纳米管以及改变TiO_2纳米管的掺量分别制样,测试电池的光电转化效率.结果 150℃48 h制备TiO_2纳米管性能参数最佳,掺杂5%纳米管粉末的薄膜电极的光电性能为1.37%.结论温度和时间的增加对TiO_2纳米管的水热合成有明显影响,三种条件下温度和时间达到最高时,TiO_2纳米管的管长、管径均达到最佳值,掺杂TiO_2纳米管粉末的薄膜电极的光电性能亦随之逐渐提高.随着TiO_2纳米管掺量的增多,其制备电极的染料吸附量也随之调高,其光电性能呈现先增大后降低的趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号