首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究含界面裂纹的横观各向同性双压电材料板在反平面剪切载荷和平面内电位移共同作用下的裂纹尖端场问题。利用复变函数方法,引入含待定实系数的应力函数,借助边界条件和待定系数法,建立非齐次线性方程组。求解得到满足控制方程和边界条件的应力函数,推导得到双压电材料板Ⅲ型界面裂纹尖端的应力场、电位移场和应力强度因子、电位移强度因子的表达式。  相似文献   

2.
在反平面无穷远处机械载荷和平面内电载荷共同作用下,运用复合函数法和待定系数法,分析了正交各向异性压电双材料反平面界面端裂纹,将反平面界面端断裂问题转换为求解偏微分方程组的边值问题,通过求解偏微分方程组,得到应力强度因子、电位移强度因子,并数值算例分析影响应力强度因子和电位移强度因子的因素.  相似文献   

3.
用复变函数及其保角映射、解析延展方法 ,建立了含刚性导电椭圆夹杂的压电材料反平面界面裂纹问题的解析方程 ,通过求解Hilbert方程得到了问题的封闭解和耦合场的强度因子。结果表明 ,耦合场在裂纹尖端有 1 / 2阶的奇异性 ,应力和电位移强度因子均与材料常数无关。同时给出了椭圆形刚性导电夹杂的特殊情况圆形夹杂和线夹杂界面裂纹问题的应力和电位移强度因子计算式  相似文献   

4.
用复变函数及其保角映射、解析延展方法,建立了含刚性导电椭圆夹杂的压电材料反平面界面裂纹问题的解析方程,通过求解Hilbert方程得到了问题的封闭解和耦合场的强度因子。结果表明,耦合场在裂纹尖端有1/2阶的奇异性,应力和电位移强度因子均与材料常数无关。同时给出了椭圆形刚性导电夹杂的特殊情况--圆形夹杂和线夹杂界面裂纹问题的应力和电位移强度因子计算式。  相似文献   

5.
用复函数的Faber级数展开方法 ,通过求解Hilbert问题研究了含任意曲线裂纹的压电材料反平面应变问题 ,获得了问题的解析解和场强度因子。结果表明 ,当边界上仅受应力和电位移载荷作用时 ,应力场与电位移载荷无关 ,电位移场与应力载荷无关。算例中分别给出了圆弧裂纹的强度因子和椭圆弧裂纹问题的无量纲强度因子。  相似文献   

6.
含曲线裂纹的压电材料反平面应变问题   总被引:2,自引:1,他引:1  
用复函数的Faber级数展开方法,通过求解Hilbert问题研究了含任意曲线裂纹的压电材料反平面应变问题,获得了问题的解析解和场强度因子。结果表明,当边界上仅受应力和电位移载荷作用时,应力场与电位移载荷无关,电位移场与应力载荷无关。算例中分别给出了圆弧裂纹的强度因子和椭圆弧裂纹问题的无量纲强度因子。  相似文献   

7.
用复函数的Faber级数展开方法,通过求解Hibert问题研究了含任意曲线裂纹的压电材料反平面应变问题,获得了问题的解析解和场强度因子。结果表明,当边界上仅受应力和电位移载荷作用时,应力场与电位移载荷无关,电位移场与应力载荷无关。算例中分别给出了圆弧裂纹的强度因子和椭圆弧裂纹问题的无量纲强度因子。  相似文献   

8.
给出了压磁材料中可导通反平面剪切界面裂纹的解析解.首先利用付里叶变换,使问题的求解转换成对一对变量为裂纹面上位移差的对偶积分方程的求解.在求解对偶积分方程时,把裂纹面上张开位移展开成雅可比多项式形式,进而可以获得应力强度因子、电位移强度因子和磁通量强度因子的解析解.从解析解中可以发现裂纹的应力强度因子与电位移强度因子和磁通量强度因子无关.  相似文献   

9.
目的 研究一维六方压电准晶双材料界面共线裂纹的反平面断裂问题。方法 利用复变函数理论中的解析延拓、奇性主部分析和推广的Liouville定理,在电渗透边界条件下研究。结果 给出了1条界面裂纹受4种不同外载荷作用及2条等长界面裂纹受无穷远均匀载荷作用等几个典型问题的解析解。同时导出了相应问题场强度因子(声子场、相位子场应力强度因子和电位移强度因子)的解析表达式。结论 理论结果表明:当趋于裂纹尖端路径选在双材料界面上时,场强度因子大小与材料弹性常数无关,仅与裂纹尺寸及裂纹所受外载荷大小有关且成正比,即随着裂纹尺寸和外载荷的增大,场强度因子随之增大。  相似文献   

10.
基于三维弹性理论和压电理论导出了材料系数在横观各向同性平面内梯度分布的压电体状态方程,进而对材料系数按指数函数规律分布的半无限大压电体中的反平面Yoffe型运动裂纹问题进行了求解.利用Fourier变换给出了半无限大压电体中位移、应力、电势、电位移的解析表达式,并求得了裂纹尖端动应力强度因子、电位移强度因子,分析了不同的非均匀材料系数、几何尺寸及裂纹运动速度对它们的影响.  相似文献   

11.
用复变函数研究了含椭圆孔的压电材料反平面问题的基本解和裂纹尖端的场强度因子.结果表明:应力强度因子与普通材料的应力强度因子相同,而电位移强度因子与前者有相同的表达形式.  相似文献   

12.
应用复变函数的Faber级数展开,导出了在集中载荷作用下,含椭圆夹杂的压电材料反平面应变问题的基本解,对向个简单情形的问题,给出了封闭形式的复型基本解和裂纹尖端的场强度因子,结果表明,应力强度因子与普通材料的应力强度因子相同,而电位移强度因子与前者有相同的表达形式。  相似文献   

13.
应用复变函数的Faber级数展开,导出了在集中载荷作用下,含椭圆夹杂的压电材料反平面应变问题的基本解。对几个简单情形的问题,给出了封闭形式的复型基本解和裂纹尖端的场强度因子,结果表明,应力强度因子与普通材料的应力强度因子相同,而电位移强度因子与前者有相同的表达形式。  相似文献   

14.
为研究含裂纹玻璃钢套管裂纹尖端应力强度因子,采用ANSYS软件建立了含中心裂纹玻璃钢套管的有限元模型,研究了玻璃钢套管长度、端面直径、裂纹长度及外载荷对裂纹尖端应力强度因子的影响.研究结果表明:可以采用有限元软件解决裂纹尖端应力场奇异性的问题,验证了使用位移外推法和J积分方法求解应力强度因子的正确性;当只改变一个参数时:裂纹尖端应力强度因子随裂纹长度变化呈线性增长;随着外载荷的增长,裂纹尖端应力强度因子呈正比关系增长;当试件长度与裂纹长度符合无限大平板假说时,采用位移外推法和J积分方法求解的应力强度因子与解析解基本一致.该成果对研究玻璃钢套管具有一定的参考价值和指导意义.  相似文献   

15.
徐燕  杨娟 《科学技术与工程》2021,21(12):4778-4784
基于压电复合材料力学,通过引入合适的数值保角映射函数,运用Stroh公式和复变函数方法,研究了压电复合材料中含正六边形孔边两不对称裂纹的反平面问题.首先由压电复合材料反平面问题的本构方程和力-电平衡方程推导出其控制方程,结合留数定理和Cauchy积分公式,求解出电不可通和电可通边界条件下裂纹尖端场强度因子和能量释放率的解析表达式.数值算例分析了正六边形的孔洞边长、裂纹几何尺寸以及机电载荷对等效场强度因子和能量释放率的影响规律.研究结果表明:正六边形孔洞边长和裂纹长度的增加会导致等效场强度因子的增大;在电不可通和电可通边界条件下,能量释放率随着正六边形的边长、裂纹的长度和机械载荷的增加而增加.在电不可通边界条件下电位移既可以促进又可以抑制裂纹的扩展,而在电可通边界条件下电位移对裂纹扩展没有影响.  相似文献   

16.
分析了粘结压电材料的梯度压电压磁层合中的界面裂纹,在非渗透性边界条件情况下,假定材料物性参数呈指数变化,运用Fourier变换将问题转化为奇异积分方程.然后利用Guass-Chebyshev积分公式对奇异积分方程进行数值求解,得到了裂纹尖端的应力、电位移和磁通量强度因子.最后考察了裂纹长度和梯度参数等因素对强度因子的影响.  相似文献   

17.
采用Schm idt方法研究条形压电材料和弹性材料的界面Ⅲ型裂纹问题,主要探讨条形压电材料和弹性材料受反平面剪应力和平面电位移作用的情形;通过Fourier积分变换和界面裂纹位移差的车贝雪夫多项式假设,并利用Schm idt方法得到数值解,结果显示应力强度因子与材料厚度、裂纹尺寸及电位移有关。  相似文献   

18.
利用奇异积分方程方法研究了一个含裂纹的功能梯度压电压磁条与半无限大功能梯度压电压磁材料粘结在非渗透边界条件下的Ⅲ型裂纹问题.首先通过积分变换得到问题的形式解,然后利用边界条件通过积分变换与留数定理得到了一组奇异积分方程,最后用Gauss-Chebyshev方法进行数值求解,讨论了材料参数、材料非均匀参数以及裂纹几何形状等对裂纹尖端应力强度因子的影响.结果表明,压电压磁复合材料中反平面问题的应力奇异形式与一般弹性材料中反平面问题的应力奇异形式相同,但材料梯度参数对功能梯度压电压磁复合材料中的应力强度因子和电位移强度因子有很大影响.  相似文献   

19.
用复变函数方法,结合椭圆形夹杂内的电场强度和电位移为常量这一早期研究结果,研究了压电材料平面电渗透裂纹的机电领事声援主其奇异 。解答表明,切向电场强度和法向电位移在裂纹尖端有由机械载上起的奇异,而与电载荷无关,应力强度因子与纯弹性材料结果一致。  相似文献   

20.
正交异性双材料反平面界面裂纹分析   总被引:3,自引:3,他引:0  
研究了正交异性双材料反平面界面裂纹问题。采用复合材料断裂复变方法,构造了特殊应力函数,通过求解一类偏微分方程组边界问题,推导出界面裂纹尖端附近的应力场、位移场及应力强度因子的表达式,确定了裂纹尖端应力场的奇异性,结果现实裂尖附近应力具有r^-1/2的奇异性,但没有振荡性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号