共查询到20条相似文献,搜索用时 0 毫秒
1.
《集美大学学报(自然科学版)》2017,(5)
为了准确获取磷酸铁锂电池的荷电状态(state of charge,SOC),针对直接测量法和扩展卡尔曼滤波方法 (extended kalman filter,EKF)估计SOC存在的不足,在分析电池的充放电过程和电池的Thevenin等效电路模型基础上,基于粒子滤波算法(particle filter,PF)对电池的SOC进行了估计。实验结果表明,PF方法比EKF方法的准确度提高了5%,采用PF算法估计SOC更加准确有效,在实际应用中更有价值。 相似文献
2.
三元锂离子电池荷电状态的估计,由于构建模型复杂,受到外界干扰因素影响较大,导致预测精度达不到理想效果,但荷电状态的估计精度对于电池管理系统而言至关重要,因此不断提高估计精度是业内的研究重点.根据已有的相关向量机算法提出了3种改进算法,即循环相关向量机、自回归相关向量机和自回归循环相关向量机,分别对3 600组大样本训练数据进行学习建模,并对另外3 600组大样本数据进行荷电状态的估计,通过与最小二乘支持向量机对比表明,提出的基于自回归循环相关向量机的三元锂离子电池SOC的估计,具有稀疏性好、拟合与泛化能力强和运行速度快等优点. 相似文献
3.
传统电池荷电状态(SOC)估计中常用的扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)方法仅适用于线性系统和高斯条件,虽然粒子滤波(PF)算法能用于非线性和非高斯系统,但PF算法在滤波更新时存在粒子退化现象,使粒子集无法表示实际后验概率分布,导致估计精度降低.采用改进的扩展粒子滤波(EPF)和无迹粒子滤波(UPF)算法对电池SOC进行估计,抑制了粒子权重退化.以Thevenin模型对电池进行建模,利用带遗忘因子的最小二乘方法进行模型参数辨识,结合改进后的滤波算法对电池SOC进行估计.实验结果表明,以UKF为建议密度函数进行重采样的UPF方法平均估计误差为0.71%,低于以EKF为建议密度函数的EPF方法平均误差(1.09%),两种方法的估计误差均小于PF估计误差(1.36%),有效抑制了粒子权重退化. 相似文献
4.
在构建锂电池状态空间模型基础上,提出一种基于优化粒子滤波的锂电池SOC估计算法,将BP神经网络应用到粒子滤波的权值更新过程中,实现锂电池SOC估计.利用某公司提供的磷酸铁锂电池测试数据,对所提出的算法进行验证,对比算法估计结果与SOC实测结果.结果表明,相对于PF算法,提出的改进算法具有更好的SOC估计性能. 相似文献
5.
为了提高锂离子电池SOC(state of charge)和SOH(state of health)的估计精度,采用自适应扩展卡尔曼粒子滤波(adaptive extended Kalman particle filter, AEKPF)算法估算SOC和SOH,该算法通过修正噪声可以解决运用EKF(extended Kalman filter)算法时的噪声误差累积问题,并且AEKF(adaptive extended Kalman filter)算法作为PF(particle filter)算法的建议分布用来实时更新粒子,可以改善单独采用PF算法时的粒子退化问题.为了提高SOC的估计精度,提出考虑电池的劣化特征,联合SOH实现对SOC的修正估计.在Matlab环境下的仿真结果表明:AEKPF算法与AEKF算法相比,可以得到更加准确的SOC和SOH估计值,而且AEKPF算法联合SOH可以有效提高SOC的估计精度,仿真绝对误差不超过±1%. 相似文献
6.
为解决粒子滤波算法中存在的权值退化和实时性差的问题,提出了一种改进的权值优化组合粒子滤波算法(impWOPF),该算法通过对粒子权值设定门限Thershold,剔除权重小于Thershold的粒子,减少不必要的粒子运算,然后对小于粒子群权值均值的粒子进行权值优化组合,以增大小权值粒子的权值,保持了粒子多样性,提高了算法的实时性。仿真结果表明,该算法能够在保证估计精度的同时,有效降低重采样过程中的计算量,有利于实时信号的处理。 相似文献
7.
《天津科技大学学报》2020,(4)
针对锂离子电池的荷电状态(state of charge,SOC)估算精度,设计了一种基于深度强化学习卡尔曼滤波锂离子电池SOC估计算法.首先以锂离子电池二阶RC等效电路为研究对象,应用卡尔曼滤波算法,构建了锂离子电池的离散系统数学模型;然后结合深度强化学习思想,构造了一种深度强化学习卡尔曼滤波算法,该算法利用贝叶斯规则确保最佳协方差.仿真结果表明,深度强化学习卡尔曼滤波算法对锂离子电池荷电状态的精度有较好的估计. 相似文献
8.
《北京交通大学学报(自然科学版)》2020,(2)
针对动力锂离子电池的SOC估计,提出一种带自适应遗忘因子的阻尼递推最小二乘法(AFFDRLS)联合改进的自适应H∞滤波(AHIF)的方法对动力锂离子电池的荷电状态(SOC)估计.建立了磷酸铁锂动力电池单体的戴维南(Thevenin)等效电路模型,以AFFDRLS在线辨识模型参数,以AHIF实时在线估计电池单体的SOC,实现了电池单体的模型参数和SOC的实时联合估计.在Matlab/Simulink中建立了AFFDRLS-AHIF的仿真模型,以估计磷酸铁锂动力电池单体的SOC.根据某电动乘用车分别在NEDC和UDDS工况下的功率需求进行单体实验,测得动力电池单体的电流、电压,并以此作为输入,采用所建立的仿真模型进行动力电池单体的SOC估计;并且与传统扩展卡尔曼滤波法(EKF)和HIF的SOC估计结果比较,结果表明:AFFDRLS-AHIF的估计精度高且鲁棒性好,可以为车辆使用的动力电池SOC估计提供参考. 相似文献
9.
为提高锂离子电池荷电状态(SOC)预测精度,提出利用回溯搜索算法(BSA)优化径向基函数(RBF)神经网络的输出权值与阈值的混合算法.通过对锂电池模型中的目标函数进行优化求解,并寻找最佳的目标权值和阈值降低预测误差,提高了RBF网络模型的预测精度.为验证算法的有效性,搭建锂离子电池的充放电实验平台获取数据并对网络进行验证,实验结果表明:混合算法相比标准RBF网络算法具有更好的SOC预测精度,并将网络输出预测误差降低到2%以内,符合锂电池荷电状态估算要求. 相似文献
10.
锂离子电池因其循环寿命产生的问题更加被重视。为了对锂离子电池的剩余循环使用寿命进行预测研究,采用了粒子滤波算法。首先对粒子滤波算法进行了概述。然后用它对电池的剩余使用寿命预测。简要描述了3组电池数据下的实验;并与扩展卡尔曼滤波进行了对比实验分析。实验结果表明了粒子滤波算法在3组数据下的绝对误差平均值近似4%,均方根误差平均值近似5%,扩展卡尔曼滤波的绝对误差平均值和均方根误差平均值分别近似6%和7%。说明了粒子滤波在锂离子电池剩余使用寿命预测中比扩展卡尔曼滤波精度更高。 相似文献
11.
在基于粒子滤波算法的锂离子电池剩余使用寿命预测过程中, 由于基本粒子滤波算法存在粒子退化问题, 难以保证电池寿命预测的精度。为此, 提出一种基于MCMC(Monte Carlo Markov Chain)的无迹粒子滤波改进算法, 从选取适当的重要性密度函数和重采样过程两方面入手, 更全面地克服基本粒子滤波算法中的粒子退化问题, 进而提高锂离子电池剩余使用寿命预测的精度。实验仿真结果表明, 改进后的粒子滤波算法能更好地跟踪电池容量衰退趋势, 预测精度也明显优于基本粒子滤波算法, 为锂离子电池剩余使用寿命的预测提供了新思路。 相似文献
12.
锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。 相似文献
13.
《燕山大学学报》2019,(6)
准确估算电池荷电状态是电池管理系统的核心技术之一。为提高估算电池荷电状态精度,构建了可描述蓄电池倍率容量特性的二元荷电状态模型,并采用一种改进的粒子滤波算法对LiFePO_4电池进行荷电状态估算。从标准粒子滤波结构入手,先引入残差重采样算法,缓解了传统序贯重要性采样的粒子退化问题;而后在重采样过程中,采用Thompson-Taylor算法对粒子进行随机线性组合,并生成新粒子,可以抑制标准粒子滤波算法执行过程中的粒子贫化问题。基于这种改进的粒子滤波算法实现了对LiFePO_4电池二元荷电状态估算。实验结果表明,改进的粒子滤波算法相比无迹卡尔曼滤波算法,估算电池荷电状态具有更高的精度,估算误差不超过±0.2%。研究结果对电池管理系统估算电池荷电状态具有现实指导意义。 相似文献
14.
针对电动汽车用锂离子电池组,提出了一种能修正初始误差的荷电状态估算方法,即采用扩展卡尔曼滤波与安时积分的组合算法.在分析电池各种等效电路模型优缺点的基础上,选用具有双阻容并联网络的PNGV改进型电池模型,并以某锂电池为实验对象,对其进行模型参数识别.然后依据电池模型建立电池的非线性状态空间方程,并对电池开路电压与SOC的关系进行多项式拟合.恒流脉冲放电和ECE15工况下的两种实验均表明,文中算法可有效修正SOC的初始误差,并能保证估算精度. 相似文献
15.
基于电化学机理模型的锂离子电池参数辨识及SOC估计 总被引:1,自引:0,他引:1
采用Fisher信息矩阵进行参数可辨识性分析,解决了参数的辨识问题,进而提出了基于简化电化学机理模型SP2D(simple pseudo-two-dimensional)的SOC(电池电量)在线估计方法。实验表明,该SOC估计方法较基于等效电路模型(一阶RC模型)的SOC估计方法,可将SOC估计的平均误差减小近30%,而在电池放电中后期更可减小达60%,有效解决了在电池全工作范围内的SOC高精度估计问题。 相似文献
16.
针对基于粒子滤波算法设计的车速估计器因提议分布与实际分布不一致导致粒子退化使估计误差变大的问题,提出了一种通过修正提议分布减弱粒子退化影响的改进粒子滤波车速估计器。首先,基于车辆运动学模型和传感器特性建立系统的状态转移方程和观测方程。然后,利用传感器测量值与粒子状态值的差值设计提议分布修正项对状态转移方程进行修正,并对过程噪声做自适应处理。最后,利用CarSim-Simulink联合仿真平台在双移线工况和正弦转角输入工况下进行仿真验证。与自适应粒子滤波器相比,双移线工况下改进粒子滤波估计器产生的纵向速度估计值和侧向速度估计值的平均绝对误差分别减小了40.25%和55.71%;正弦转角输入工况下,改进粒子滤波估计器产生的纵向速度估计值和侧向速度估计值的平均绝对误差分别减小了47.00%和41.21%。 相似文献
17.
信号噪声干扰、电池模型对温度与老化的适应性及单体不一致性等因素直接影响电池组电荷状态(State of Charge,SOC)估算精度.为实现锂离子电池组SOC的准确估计,提出了一种使用交互多模型(Interacting Multiple Model,IMM)和自适应电池状态估计器(Adaptive Battery State Estimator,ABSE)相结合的估算方法.首先,基于电池组综合特性建立电池交互模型,通过ABSE对单体SOC进行估算并嵌入IMM模型中.然后,计算各模型的信息分配因子,并根据信息分配因子对各模型的SOC进行概率融合,得到精度较高的电池组SOC.最后,在不同温度的组合工况下,评估该算法的鲁棒性和普适性.实验结果表明,该方法适用于系统输入信号存在噪声、全气候工况和单体间存在不一致性的环境,在有效充放电期间平均误差小于2%. 相似文献
18.
为了解决电动汽车电池荷电状态估算不准确的问题,以最常用的磷酸铁锂电池作为研究对象,以二阶RC等效电路作为电池模型,对模型参数进行在线识别,采用无迹卡尔曼滤波算法估算电池SOC,并与理想状态下AH法计算得到SOC进行比较。MATLA仿真结果表明,UKF算法的估计结果与AH法的结果大致相同,说明UKF算法对SOC的估算具有相当高的精度,高精度工程中具有一定的应用价值。 相似文献
19.
锂离子电池荷电状态的快速准确估计是电池管理系统的关键技术之一.针对锂离子电池这一动态非线性系统,通过测试分析锂离子电池的滞回特性,建立了锂离子电池的二阶RC滞回模型,并利用容积卡尔曼滤波算法对电池荷电状态进行估算.实验结果表明,该模型能较好地体现电池的动态滞回特性,而且容积卡尔曼滤波算法在估算过程中能保持较高的精度. 相似文献
20.
针对常用电池模型参数固定和适用范围有限的问题,建立受温度和SOC影响的可变参数的Thevenin模型,并利用实验设计(DOE)方法和最小二乘法对模型参数进行辨识.针对系统噪声较大时影响算法估计精度的问题,提出了一种改进的无迹卡尔曼粒子滤波(IUPF)算法.将系统状态噪声和量测噪声两者同时引入到采样点中,对其进行对称采样处理,同时将其引入到算法计算过程中以保证算法的精度.在可变参数Thevenin模型基础上采用的IUPF算法,在保证模型适用范围的同时减小了噪声对系统估计精度的影响.实验及仿真结果表明,基于IUPF算法与可变参数电池模型的SOC估计方法在解决现有电池模型适用范围有限、保证模型精度的同时,在多个温度下对SOC有较高的估算精度.尤其在系统状态噪声、量测噪声影响较大时,算法估算精度有了明显提高,且对由模型参数所带来的扰动具有良好的鲁棒性. 相似文献