首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
季铵阳离子纤维素醚的合成   总被引:7,自引:0,他引:7  
以碱性棉短绒纤维素为原料、3-氯-2-羟丙基三甲基氯化铵为醚化剂,合成了季铵盐阳离子纤维素醚,对NaOH与醚化剂的摩尔比、醚化反应温度、时间等因素对合成产物的影响进行了分析,并采用红外光谱对产物的结构进行了鉴定.实验发现:在25℃下,经30%的NaOH溶液处理1 h的纤维素保水值高,反应性能良好;在异丙醇稀释剂中,NaOH和醚化剂的摩尔比为1.2、醚化反应温度为45℃、反应时间为3 h时,醚化产物的取代度达1.15.分别用甲醇、乙醇、异丙醇和丙酮作醚化反应稀释剂,发现产物性能随有机稀释剂的溶度参数——氢键分量的减小而提高,其中以丙酮作为稀释剂制备出的产物取代度为1.19,透光率为98.1%,性能最优异.红外光谱分析证实棉短绒纤维素实现了阳离子化.  相似文献   

2.
以纯化的碱木质素和季铵盐型3氯2羟丙基三甲基氯化铵(CHPTMAC)为原料,通过醚化反应合成木质素阳离子表面活性剂。通过对产品表面张力、氮含量和溶解性能的分析,研究了阳离子醚化剂用量、碱与阳离子醚化剂的摩尔比、反应温度和反应时间等对产品性能的影响。结果表明:合成阳离子表面活性剂的适宜条件为CHPTMAC质量摩尔浓度为4 mol/kg,碱与阳离子醚化剂的摩尔比为1.3,反应温度50℃,反应时间4 h;在此条件下合成的产品的表面张力为42.9 mN/m,氮含量为2.53%;在不同pH时阳离子表面活性剂均具有较好的溶解性能。  相似文献   

3.
以沙蒿子多糖原粉为基料,3-氯-2-羟丙基三甲基氯化铵(HAT)为阳离子醚化剂,异丙醇为分散剂,在碱的催化作用下,制得阳离子化沙蒿子多糖。研究了碱化、醚化温度和时间以及碱醚比和醇水比对最终产品冷水溶解性和透光率的影响。结果表明:当m(异丙醇)∶m(蒸馏水)=3.5∶1,n(氢氧化钠)∶n(阳离子醚化剂)=1.5∶1,反应工艺条件为加入碱后直接升温醚化,醚化温度为60℃,醚化时间为3.5h时,与未改性的原粉相比,产品的冷水溶解性明显提高,透光率达到80%以上。用FTIR和DSC对其结构和耐热性进行了分析。  相似文献   

4.
本文以3-氯-2-羟丙基三甲基氯化胺为醚化剂对木薯淀粉进行醚化制得季胺型阳离子淀粉。以互甲胺盐酸盐、环氧氯丙烷为原料,制备了醚化剂3-氯-2-羟丙基三甲基氯化胺,醚化剂制备适宜温度为20℃,二者物质的量之比1.00:1.05,反应时间3—4h.真空蒸馏3—4次提纯。采用湿法制备阳离子淀粉,反应浆液浓度30%-40%,反应温度40℃,反应体系pH值11—12,氢氧化钠与醚化剂物质的量之比2-8:1,淀粉与醚化剂物质的量之比1:0.15。取代度为0.07-0.12。67  相似文献   

5.
为探索纤维素分离提取的新方法,采用以1,4丁二醇(BDO)和氯化胆碱(ChCl)为氢键供受体的深度共熔溶剂(DES),分离提取废弃生物质玉米芯中的纤维素。通过实验考察了常压下ChCl与BDO物质的量比、温度、时间、液固比对纤维物质得率和纤维素含量的影响,通过红外光谱(FT-IR)、热重分析(TG/DTG)、X射线衍射(XRD)、扫描电镜(SEM)等对原料和产品进行了表征分析。结果表明:当ChCl-BDO物质的量比为1∶3、温度为180℃、时间为4h、液固比为20∶1时,纤维物质的得率为44.6%,纤维素含量为77.8%,木质素的脱除率达到95%,半纤维素的脱除率为75%,纤维素基本不损失。FT-IR,TG/DTG,XRD,SEM分析表明,玉米芯经DES处理后,木质素、半纤维素被大量脱除,得到的纤维物质内部较松散,纤维素的结构基本未被破坏。DES在纤维素分离提取领域有着良好的应用前景。  相似文献   

6.
反应工艺对纤维素醚化反应效果的研究   总被引:5,自引:0,他引:5  
用精制棉纤维素为原料,分别用捏和机和搅拌式反应釜进行纤维素的醚化反应活性研究,并分别用氯乙醇和一氯乙酸为醚化剂,制备羟乙基纤维素和羧甲基纤维素。研究结果表明,在高强度搅拌的情况下,采用搅拌式反庆釜进行纤维素的醚化反应,纤维素有较好的醚化反应活性,表现在醚化反应效率提高、产品在水溶液中的透光性增强等方面皆比用捏 合机的方法好。因此提高反应过程的搅拌强度,是研制取代均一性好的纤维素醚化产品的较好方法。  相似文献   

7.
将碱纤维素与环氧丙烷进行醚化反应,利用气固相法合成低取代度的羟丙基纤维素(HPC).研究了环氧丙烷质量分数、压榨比、醚化温度对HPC的醚化度及环氧丙烷有效利用率的影响.结果表明:HPC的最佳合成条件为环氧丙烷质量分数为20%(与纤维素的质量比),碱纤维素的压榨比为3.0,醚化温度为60℃.通过核磁共振对HPC进行结构测试,可知HPC的醚化度为0.23,环氧丙烷有效利用率为41.51%,纤维素分子链上成功接上了羟丙基基团.  相似文献   

8.
以农业废弃物玉米芯粉为原材料,用自制的阳离子醚化剂N-(2、3-环氧丙基)三甲基氯化铵对其进行阳离子化改性,以制备高分子改性絮凝剂.红外光谱扫描图谱显示,产物是含有季胺基团的胺基化纤维素和淀粉.用其絮凝沉淀处理船舶压载水中微藻,总体絮凝沉淀效果良好,用量为50 mg/L时,作用48 h后对新月菱形藻的去除率达到95%;作用72 h对小球藻达到同样的处理效果.同时,对添加絮凝剂前后上述两种藻的叶绿素a测定结果进一步表明,该絮凝剂对其有杀灭抑制作用.  相似文献   

9.
阳离子蔗渣半纤维素的合成及表征   总被引:3,自引:0,他引:3  
以从蔗渣中提取的半纤维素为原料、3-氯-2-羟丙基三甲基氯化铵为阳离子试剂、乙醇/水为反应介质,通过季铵化反应制备了阳离子蔗渣半纤维素聚合物.通过改变反应条件合成了一系列水溶性好、取代度在0.002~0.02之间的阳离子半纤维素.采用傅立叶红外光谱和13C核磁共振表征了改性半纤维素的结构,并利用凝胶渗透色谱检测了改性前后半纤维素的相对分子质量,发现改性后半纤维素的相对分子质量有所降低.最后利用同步热分析仪测定了改性前后半纤维素的热稳定性,发现改性后半纤维素的热稳定性下降.  相似文献   

10.
研究了半干法制备高取代度阳离子淀粉的反应动力学过程,讨论了不同温度、反应物料配比、催化剂用量等反应条件对淀粉醚化反应速率的影响.结果表明,提高反应温度,反应速率明显加快,反应程度与体系黏度的变化并无直接关系,淀粉阳离子化反应符合二级动力学的反应机理,阳离子醚化反应的表观活化能E_(?)=76.5 kJ/mol.醚化反应速率随着体系中醚化剂和催化剂浓度的增加而升高,但副反应也逐渐加剧.  相似文献   

11.
以自制双端环氧硅油为封端剂、3-[(2,3)-环氧丙烷]丙基甲基二甲氧基硅烷为偶联剂、四甲基氢氧化铵(TMAH)为催化剂及八甲基环四硅氧烷(D4)为原料,通过本体聚合法制备端-侧环氧硅油(ESESO)。然后以三甲胺盐酸盐为阳离子化试剂、异丙醇为溶剂与ESESO反应得到阳离子超支化硅油(CHSOS)。分别用红外光谱和核磁共振氢谱对产物进行了结构表征。结果表明:CHSOS最佳合成条件为,阳离子试剂与ESESO的物质的量比为1.2∶1,反应时间为6h,反应温度为85℃,溶剂用量为总反应质量的40%。  相似文献   

12.
为揭示芳砜纶(PSA)纤维在高温、高湿、高酸性腐蚀条件下的失效特性,对PSA纤维在85℃、不同质量分数的硫酸腐蚀条件下的力学性能进行了研究,并采用扫描电镜(SEM)、红外光谱(IR)、热重(TG)分析等方法,对其微观结构及热稳定性能进行了分析.研究结果表明:PSA纤维在强酸加热条件下会发生水解反应,随着酸性腐蚀强度的增加,纤维失效加剧,纤维的力学性能、热稳定性能逐步下降;纤维的表面形态及分子结构发生改变,表面出现明显的侵蚀痕迹、甚至开裂,酰胺键水解形成羧基.这说明,芳砜纶在工业炉窑高温、高湿、高酸性腐蚀条件下应用时必须要做好防腐处理.  相似文献   

13.
以天然生物质棉纤维为原料,采用氯化锂/N,N-二甲基乙酰胺(Li Cl/DMAC)溶解体系对其进行活化处理,配置不同质量分数的纤维素有机溶液系列,在不同凝固浴条件下,采用KW-4A匀胶机高速旋涂成膜和AFA-Ⅱ自动涂膜器低速平推成膜2种工艺,制备再生纤维素薄膜系列。通过运用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线衍射仪(XRD)和表面接触角测试仪等分析设备对再生纤维素膜的大分子结构、力学性能、结晶度、热稳定性和表面浸润性进行各项性能的系列化表征,研究纤维素质量分数、凝固浴种类、制膜工艺对膜性能的影响。实验结果表明:采用KW-4A匀胶机高速成膜工艺、凝固浴为水浴、纤维素质量分数为3.5%时,制备的再生纤维素膜的各项性能最佳;与天然生物质棉纤维相比,再生纤维素膜结晶度变化很大,热稳定性与棉纤维变化趋势一致但有一定程度下降,表面浸润性良好。  相似文献   

14.
阳离子壳聚糖的合成及絮凝性能研究   总被引:3,自引:0,他引:3  
以2,3-环氧丙基三甲基氯化铵(EPTMAC)为醚化剂,在有机溶剂中合成了壳聚糖(chitosan)季铵盐,并选择出了最佳的合成路线.最佳反应条件为2,3-环氧丙基三甲基氯化铵水溶液质量分数为35%,n(EPTMAC)/n(chitosan)为1.5,反应温度为80℃,反应时间为10 h.在此条件下合成的产品转化率高,水溶性好,对油田污水具有良好的絮凝净水性能.  相似文献   

15.
毛竹纳米纤维素晶体的制备及特征分析   总被引:1,自引:0,他引:1  
以毛竹为原料,首先经过次氯酸钠和氢氧化钠溶液去除竹纤维中的木质素与半纤维素等成分,再通过30%硫酸溶液与超声波处理结合的方法分离出毛竹纳米纤维素晶体.通过扫描电镜(SEM)与透射扫描电镜(TEM)对分离过程中各阶段产物进行形态特征分析,研究结果表明,纳米纤维素晶体的直径在20 ~ 85 nm之间.傅里叶红外光谱(FTIR)与X射线衍射(XRD)分析显示,毛竹中的木质素以及半纤维素已基本被移去,α-纤维素以及纳米纤维素晶体的结晶度得到明显的提高.热重分析仪(TGA)分析显示各个分离阶段所得产物的热稳定性均高于原竹纤维,但纳米纤维素晶体的热稳定性较α-纤维素的略低.  相似文献   

16.
采用原子转移自由基聚合(SI-ATRP)在纤维素纳米晶体(CNC)表面接枝聚苯乙烯,并利用傅里叶红外光谱(FTIR)、热重分析仪(TGA)对改性前后的纤维素纳米晶体的化学结构和热稳定性进行了研究。测试结果表明,聚苯乙烯可成功地接枝到纤维素纳米晶体的表面; 纤维素纳米晶体的热分解温度由150 ℃上升到220 ℃,改性后纤维素纳米晶体的热稳定性得到提高。采用溶液浇铸法制备聚甲基丙烯酸甲酯/纤维素纳米晶体复合材料(PMMA/CNC),并利用TGA、透光率测试对复合材料热稳定性和透光率进行了研究。结果表明,当温度达到350 ℃时,PMMA/CNC的热分解温度比纯PMMA提高了近150 ℃, CNC的加入量为1%时,复合材料的透光率为89%,接近纯PMMA的透光率(91%)。聚苯乙烯改性纤维素纳米晶体可用于在保持PMMA透明性的前提下更好地改善PMMA复合材料的热稳定性。  相似文献   

17.
为进一步提高环氧化效率,以氯化胆碱为氢键受体,将其与二水草酸以物质的量比为1∶1制备的低共熔离子液体作为酸性相转移催化剂,并以过氧甲酸为供氧剂,无溶剂催化大豆油环氧化合成环保型增塑剂.通过单因素实验探究了反应温度、反应时间及催化剂、双氧水、甲酸的用量对原料油环氧化率的影响.在优化条件下制得的产品色泽浅,环氧化率高达90.32%,环氧值为6.85%,产品质量优于国家标准.且催化剂易与产物分离,并能循环使用.傅里叶红外光谱(FT-IR)及核磁共振光谱(1H NMR)结果表明原料油中不饱和双键转化较为完全,环氧化率高,催化剂的选择性好;热分析(TG-DSC)表明产品环氧大豆油初始热分解温度为265℃,在高于223℃的温度下才有失重趋势,热稳定性较好.  相似文献   

18.
马铃薯变性淀粉用作钻井液降失水剂的研究   总被引:3,自引:0,他引:3  
为克服羧甲基纤维素 (CMC)类降失水剂的缺陷 ,合成了醚化、接枝热交联淀粉 .将这两种产物单独及复配后用作钻井液降失水剂 ,并依据API标准对其降失水性能进行了评价 ;通过正交实验对其合成工艺进行了优化 ;运用红外光谱对其结构进行了表征 .研究结果表明 :合成醚化淀粉时最合适的用水量为 15mL ;合成接枝淀粉时最合适的单体用量为 4 .5 g ,热交联温度在 35℃时所得产品降失水率最高 ;醚化淀粉与接枝淀粉复配质量比为 1∶1时降失水性能较理想可达到 5 0 % ;醚化、接枝反应确已发生并在分子中引入了相应的官能团 .该产物对环境基本无伤害 ,有望部分或者完全取代CMC类钻井液降失水剂  相似文献   

19.
以决明子多糖(CTG)为原料,氯乙酸(MCA)为羧甲基化醚化剂,异丙醇水溶液为分散剂,制备了高取代度羧甲基决明子多糖。研究了氯乙酸用量、固液比、碱化时间及温度、醚化时间及温度对产品取代度的影响。实验结果表明:n(MCA)/n(CTG)=1.6∶1,固液比为1∶2.5,碱化温度为40℃,碱化时间为60min,醚化温度为53℃,醚化时间为3.0h时,产品的取代度最高为0.64,羧甲基利用率为79.5%。与原粉相比,羧甲基决明子多糖溶液稳定时间更长,6天内黏度变化不大,耐电解质性良好。采用FTIR,13C-NMR和TGA对羧甲基决明子多糖的结构和热性能进行了分析。  相似文献   

20.
采用氨水和氯化镁为原料制备氢氧化镁晶体,在自制的纤维素膜上进行原位生长,对纤维素膜进行羧基改性,使纤维素膜表面产生具有能与氢氧化镁结合的活性结合点,控制氯化钠的添加,研究Na+对氢氧化镁晶体生长的影响.利用扫描电子显微镜(SEM)观察氢氧化镁晶体的表面形态;X-射线衍射(XRD)分析其晶型结构;电感耦合等离子体(ICP)分析纤维素膜上镁元素的含量.研究结果表明,添加氯化钠,纤维素膜上得到棒状氢氧化镁晶体;不添加氯化钠,纤维素膜上得到片状的氢氧化镁晶体;生长有棒状氢氧化镁晶体的纤维素膜上镁元素含量比片状氢氧化镁晶体高.另外,生长有氢氧化镁晶体后纤维素膜的热稳定性有所提高,且生长有棒状氢氧化镁晶体的纤维素膜比生长有片状氢氧化镁晶体纤维素膜的热稳定性更好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号