首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Late Miocene hominids from the Middle Awash, Ethiopia.   总被引:8,自引:0,他引:8  
Y Haile-Selassie 《Nature》2001,412(6843):178-181
Molecular studies suggest that the lineages leading to humans and chimpanzees diverged approximately 6.5-5.5 million years (Myr) ago, in the Late Miocene. Hominid fossils from this interval, however, are fragmentary and of uncertain phylogenetic status, age, or both. Here I report new hominid specimens from the Middle Awash area of Ethiopia that date to 5.2-5.8 Myr and are associated with a wooded palaeoenvironment. These Late Miocene fossils are assigned to the hominid genus Ardipithecus and represent the earliest definitive evidence of the hominid clade. Derived dental characters are shared exclusively with all younger hominids. This indicates that the fossils probably represent a hominid taxon that postdated the divergence of lineages leading to modern chimpanzees and humans. However, the persistence of primitive dental and postcranial characters in these new fossils indicates that Ardipithecus was phylogenetically close to the common ancestor of chimpanzees and humans. These new findings raise additional questions about the claimed hominid status of Orrorin tugenensis, recently described from Kenya and dated to approximately 6 Myr.  相似文献   

2.
Pleistocene Homo sapiens from Middle Awash,Ethiopia   总被引:10,自引:0,他引:10  
White TD  Asfaw B  DeGusta D  Gilbert H  Richards GD  Suwa G  Howell FC 《Nature》2003,423(6941):742-747
The origin of anatomically modern Homo sapiens and the fate of Neanderthals have been fundamental questions in human evolutionary studies for over a century. A key barrier to the resolution of these questions has been the lack of substantial and accurately dated African hominid fossils from between 100,000 and 300,000 years ago. Here we describe fossilized hominid crania from Herto, Middle Awash, Ethiopia, that fill this gap and provide crucial evidence on the location, timing and contextual circumstances of the emergence of Homo sapiens. Radioisotopically dated to between 160,000 and 154,000 years ago, these new fossils predate classic Neanderthals and lack their derived features. The Herto hominids are morphologically and chronologically intermediate between archaic African fossils and later anatomically modern Late Pleistocene humans. They therefore represent the probable immediate ancestors of anatomically modern humans. Their anatomy and antiquity constitute strong evidence of modern-human emergence in Africa.  相似文献   

3.
Suwa G  Kono RT  Katoh S  Asfaw B  Beyene Y 《Nature》2007,448(7156):921-924
With the discovery of Ardipithecus, Orrorin and Sahelanthropus, our knowledge of hominid evolution before the emergence of Pliocene species of Australopithecus has significantly increased, extending the hominid fossil record back to at least 6 million years (Myr) ago. However, because of the dearth of fossil hominoid remains in sub-Saharan Africa spanning the period 12-7 Myr ago, nothing is known of the actual timing and mode of divergence of the African ape and hominid lineages. Most genomic-based studies suggest a late divergence date-5-6 Myr ago and 6-8 Myr ago for the human-chimp and human-gorilla splits, respectively-and some palaeontological and molecular analyses hypothesize a Eurasian origin of the African ape and hominid clade. We report here the discovery and recognition of a new species of great ape, Chororapithecus abyssinicus, from the 10-10.5-Myr-old deposits of the Chorora Formation at the southern margin of the Afar rift. To the best of our knowledge, these are the first fossils of a large-bodied Miocene ape from the African continent north of Kenya. They exhibit a gorilla-sized dentition that combines distinct shearing crests with thick enamel on its 'functional' side cusps. Visualization of the enamel-dentine junction by micro-computed tomography reveals shearing crest features that partly resemble the modern gorilla condition. These features represent genetically based structural modifications probably associated with an initial adaptation to a comparatively fibrous diet. The relatively flat cuspal enamel-dentine junction and thick enamel, however, suggest a concurrent adaptation to hard and/or abrasive food items. The combined evidence suggests that Chororapithecus may be a basal member of the gorilla clade, and that the latter exhibited some amount of adaptive and phyletic diversity at around 10-11 Myr ago.  相似文献   

4.
The Middle Awash study area of Ethiopia's Afar rift has yielded abundant vertebrate fossils (approximately 10,000), including several hominid taxa. The study area contains a long sedimentary record spanning Late Miocene (5.3-11.2 Myr ago) to Holocene times. Exposed in a unique tectonic and volcanic transition zone between the main Ethiopian rift (MER) and the Afar rift, sediments along the western Afar rift margin in the Middle Awash provide a unique window on the Late Miocene of Ethiopia. These deposits have now yielded the earliest hominids, described in an accompanying paper and dated here to between 5.54 and 5.77 Myr. These geological and palaeobiological data from the Middle Awash provide fresh perspectives on hominid origins and early evolution. Here we show that these earliest hominids derive from relatively wet and wooded environments that were modulated by tectonic, volcanic, climatic and geomorphic processes. A similar wooded habitat also has been suggested for the 6.0 Myr hominoid fossils recently recovered from Lukeino, Kenya. These findings require fundamental reassessment of models that invoke a significant role for global climatic change and/or savannah habitat in the origin of hominids.  相似文献   

5.
The origin of Australopithecus, the genus widely interpreted as ancestral to Homo, is a central problem in human evolutionary studies. Australopithecus species differ markedly from extant African apes and candidate ancestral hominids such as Ardipithecus, Orrorin and Sahelanthropus. The earliest described Australopithecus species is Au. anamensis, the probable chronospecies ancestor of Au. afarensis. Here we describe newly discovered fossils from the Middle Awash study area that extend the known Au. anamensis range into northeastern Ethiopia. The new fossils are from chronometrically controlled stratigraphic sequences and date to about 4.1-4.2 million years ago. They include diagnostic craniodental remains, the largest hominid canine yet recovered, and the earliest Australopithecus femur. These new fossils are sampled from a woodland context. Temporal and anatomical intermediacy between Ar. ramidus and Au. afarensis suggest a relatively rapid shift from Ardipithecus to Australopithecus in this region of Africa, involving either replacement or accelerated phyletic evolution.  相似文献   

6.
Significance of enamel thickness in hominoid evolution   总被引:6,自引:0,他引:6  
L Martin 《Nature》1985,314(6008):260-263
Enamel thickness has assumed unique importance in the debate about the hominid status of Ramapithecus, despite the fact that there is little agreement about the meaning of 'thick enamel' or the significance of enamel thickness for hominoid taxonomy. My aim here is to evaluate the usefulness of enamel thickness and microstructure as characteristics for determining the relationships of the later Miocene hominoids, based both on a quantitative study of enamel thickness in extant hominoids and four species of later Miocene Sivapithecus (including 'Ramapithecus') and on scanning electron microscope analysis of enamel microstructure. Four categories of enamel thickness are defined metrically here and have been related to enamel microstructure and developmental rates. Thin fast-formed (pattern 3) enamel represents the ancestral condition in hominoids; it increased developmentally to thick pattern 3 enamel in the great ape and human clade and that condition is primitively retained in Homo and in the fossil hominoid Sivapithecus (including 'Ramapithecus'). Enamel thickness has been secondarily reduced in the African apes and also, although at a different rate and extent, in the orang-utan. Thick enamel, previously the most important characteristic in arguments about the earliest hominid, does not therefore identify a hominid.  相似文献   

7.
Stratigraphic placement and age of modern humans from Kibish, Ethiopia   总被引:1,自引:0,他引:1  
McDougall I  Brown FH  Fleagle JG 《Nature》2005,433(7027):733-736
In 1967 the Kibish Formation in southern Ethiopia yielded hominid cranial remains identified as early anatomically modern humans, assigned to Homo sapiens. However, the provenance and age of the fossils have been much debated. Here we confirm that the Omo I and Omo II hominid fossils are from similar stratigraphic levels in Member I of the Kibish Formation, despite the view that Omo I is more modern in appearance than Omo II. 40Ar/39Ar ages on feldspar crystals from pumice clasts within a tuff in Member I below the hominid levels place an older limit of 198 +/- 14 kyr (weighted mean age 196 +/- 2 kyr) on the hominids. A younger age limit of 104 +/- 7 kyr is provided by feldspars from pumice clasts in a Member III tuff. Geological evidence indicates rapid deposition of each member of the Kibish Formation. Isotopic ages on the Kibish Formation correspond to ages of Mediterranean sapropels, which reflect increased flow of the Nile River, and necessarily increased flow of the Omo River. Thus the 40Ar/39Ar age measurements, together with the sapropel correlations, indicate that the hominid fossils have an age close to the older limit. Our preferred estimate of the age of the Kibish hominids is 195 +/- 5 kyr, making them the earliest well-dated anatomically modern humans yet described.  相似文献   

8.
Patterns and rates of enamel growth in the molar teeth of early hominids   总被引:3,自引:0,他引:3  
A D Beynon  B A Wood 《Nature》1987,326(6112):493-496
A recent study of the surface manifestation of incremental lines associated with enamel formation suggested that the crowns of early hominid incisor teeth were formed more rapidly than those of modern humans. In the absence of comparative data, the authors were forced to assume that enamel increments in fossil teeth were similar to those in modern humans. We have used evidence from the fractured surfaces of molar teeth to deduce estimates for both long- and short-period incremental growth markers within enamel in east African 'robust' australopithecine and early Homo teeth. We conclude that in these early hominids, crown formation times in posterior teeth, particularly in the large thick enamelled molar teeth of the east African 'robust' australopithecines, were shorter than those of modern humans. This evidence, considered together with data on crown and root formation times in modern apes, suggests that the posterior teeth in these hominids both formed and erupted more rapidly than those of modern man. These results have implications for attempts to assess dental and skeletal maturity in hominids.  相似文献   

9.
Lunt DJ  Foster GL  Haywood AM  Stone EJ 《Nature》2008,454(7208):1102-1105
It is thought that the Northern Hemisphere experienced only ephemeral glaciations from the Late Eocene to the Early Pliocene epochs (about 38 to 4 million years ago), and that the onset of extensive glaciations did not occur until about 3 million years ago. Several hypotheses have been proposed to explain this increase in Northern Hemisphere glaciation during the Late Pliocene. Here we use a fully coupled atmosphere-ocean general circulation model and an ice-sheet model to assess the impact of the proposed driving mechanisms for glaciation and the influence of orbital variations on the development of the Greenland ice sheet in particular. We find that Greenland glaciation is mainly controlled by a decrease in atmospheric carbon dioxide during the Late Pliocene. By contrast, our model results suggest that climatic shifts associated with the tectonically driven closure of the Panama seaway, with the termination of a permanent El Ni?o state or with tectonic uplift are not large enough to contribute significantly to the growth of the Greenland ice sheet; moreover, we find that none of these processes acted as a priming mechanism for glacial inception triggered by variations in the Earth's orbit.  相似文献   

10.
A newly discovered partial hominin foot skeleton from eastern Africa indicates the presence of more than one hominin locomotor adaptation at the beginning of the Late Pliocene epoch. Here we show that new pedal elements, dated to about 3.4 million years ago, belong to a species that does not match the contemporaneous Australopithecus afarensis in its morphology and inferred locomotor adaptations, but instead are more similar to the earlier Ardipithecus ramidus in possessing an opposable great toe. This not only indicates the presence of more than one hominin species at the beginning of the Late Pliocene of eastern Africa, but also indicates the persistence of a species with Ar. ramidus-like locomotor adaptation into the Late Pliocene.  相似文献   

11.
The search for the earliest fossil evidence of the human lineage has been concentrated in East Africa. Here we report the discovery of six hominid specimens from Chad, central Africa, 2,500 km from the East African Rift Valley. The fossils include a nearly complete cranium and fragmentary lower jaws. The associated fauna suggest the fossils are between 6 and 7 million years old. The fossils display a unique mosaic of primitive and derived characters, and constitute a new genus and species of hominid. The distance from the Rift Valley, and the great antiquity of the fossils, suggest that the earliest members of the hominid clade were more widely distributed than has been thought, and that the divergence between the human and chimpanzee lineages was earlier than indicated by most molecular studies.  相似文献   

12.
New partial skeleton of Homo habilis from Olduvai Gorge, Tanzania   总被引:1,自引:0,他引:1  
A new partial skeleton of an adult hominid from lower Bed I (about 1.8 Myr ago), Olduvai Gorge, is described. This specimen's craniodental anatomy indicates attribution to Homo habilis, but its postcranial anatomy, including small body size and relatively long arms, is strikingly similar to that of some early Australopithecus individuals.  相似文献   

13.
Life-history traits correlate closely with dental growth, so differences in dental growth within Homo can enable us to determine how somatic development has evolved and to identify developmental shifts that warrant species-level distinctions. Dental growth can be determined from the speed of enamel formation (or extension rate). We analysed the enamel extension rate in Homo antecessor (8 teeth analysed), Homo heidelbergensis (106), Homo neanderthalensis ('Neanderthals'; 146) and Upper Palaeolithic-Mesolithic Homo sapiens (100). Here we report that Upper Palaeolithic-Mesolithic H. sapiens shared an identical dental development pattern with modern humans, but that H. antecessor and H. heidelbergensis had shorter periods of dental growth. Surprisingly, Neanderthals were characterized by having the shortest period of dental growth. Because dental growth is an excellent indicator of somatic development, our results suggest that Neanderthals developed faster even than their immediate ancestor, H. heidelbergensis. Dental growth became longer and brain size increased from the Plio-Pleistocene in hominid evolution. Neanderthals, despite having a large brain, were characterized by a short period of development. This autapomorphy in growth is an evolutionary reversal, and points strongly to a specific distinction between H. sapiens and H. neanderthalensis.  相似文献   

14.
Remains of Homo erectus from Bouri, Middle Awash, Ethiopia   总被引:5,自引:0,他引:5  
The genesis, evolution and fate of Homo erectus have been explored palaeontologically since the taxon's recognition in the late nineteenth century. Current debate is focused on whether early representatives from Kenya and Georgia should be classified as a separate ancestral species ('H. ergaster'), and whether H. erectus was an exclusively Asian species lineage that went extinct. Lack of resolution of these issues has obscured the place of H. erectus in human evolution. A hominid calvaria and postcranial remains recently recovered from the Dakanihylo Member of the Bouri Formation, Middle Awash, Ethiopia, bear directly on these issues. These approximately 1.0-million-year (Myr)-old Pleistocene sediments contain abundant early Acheulean stone tools and a diverse vertebrate fauna that indicates a predominantly savannah environment. Here we report that the 'Daka' calvaria's metric and morphological attributes centre it firmly within H. erectus. Daka's resemblance to Asian counterparts indicates that the early African and Eurasian fossil hominids represent demes of a widespread palaeospecies. Daka's anatomical intermediacy between earlier and later African fossils provides evidence of evolutionary change. Its temporal and geographic position indicates that African H. erectus was the ancestor of Homo sapiens.  相似文献   

15.
Alemseged Z  Spoor F  Kimbel WH  Bobe R  Geraads D  Reed D  Wynn JG 《Nature》2006,443(7109):296-301
Understanding changes in ontogenetic development is central to the study of human evolution. With the exception of Neanderthals, the growth patterns of fossil hominins have not been studied comprehensively because the fossil record currently lacks specimens that document both cranial and postcranial development at young ontogenetic stages. Here we describe a well-preserved 3.3-million-year-old juvenile partial skeleton of Australopithecus afarensis discovered in the Dikika research area of Ethiopia. The skull of the approximately three-year-old presumed female shows that most features diagnostic of the species are evident even at this early stage of development. The find includes many previously unknown skeletal elements from the Pliocene hominin record, including a hyoid bone that has a typical African ape morphology. The foot and other evidence from the lower limb provide clear evidence for bipedal locomotion, but the gorilla-like scapula and long and curved manual phalanges raise new questions about the importance of arboreal behaviour in the A. afarensis locomotor repertoire.  相似文献   

16.
Butzer KW 《Nature》1970,226(5244):425-430
Geomorphological and sedimentological studies of depositional environments of the modern Omo River delta and floodplain are essential to an understanding of the Pliocene to Pleistocene Mursi, Nkalabong and Kibish Formations of the Lower Omo Basin (southwestern Ethiopia).  相似文献   

17.
Discoveries in Chad by the Mission Paleoanthropologique Franco-Tchadienne have substantially changed our understanding of early human evolution in Africa. In particular, the TM 266 locality in the Toros-Menalla fossiliferous area yielded a nearly complete cranium (TM 266-01-60-1), a mandible, and several isolated teeth assigned to Sahelanthropus tchadensis and biochronologically dated to the late Miocene epoch (about 7 million years ago). Despite the relative completeness of the TM 266 cranium, there has been some controversy about its morphology and its status in the hominid clade. Here we describe new dental and mandibular specimens from three Toros-Menalla (Chad) fossiliferous localities (TM 247, TM 266 and TM 292) of the same age. This new material, including a lower canine consistent with a non-honing C/P3 complex, post-canine teeth with primitive root morphology and intermediate radial enamel thickness, is attributed to S. tchadensis. It expands the hypodigm of the species and provides additional anatomical characters that confirm the morphological differences between S. tchadensis and African apes. S. tchadensis presents several key derived features consistent with its position in the hominid clade close to the last common ancestor of chimpanzees and humans.  相似文献   

18.
利用二维地震测线,结合地质和钻井等资料,通过开展详细的构造和沉积解释,分析滇东北褶皱带上的曲靖、越州和陆良3个残余型陆相沉积盆地的构造特征、形成演化和成因联系,特别对渐新世末和上新世末2期重要的构造反转进行较系统地综合研究,分析构造反转活动对生物气成藏条件的控制作用。研究结果表明:渐新世末的构造反转避免了蔡家冲组沉积有机质的大量消耗,促使了蔡家冲组主力烃源岩的二次产气,保障了第四纪以来生物气成藏的有机物质和气源的持续供给;上新世末的构造反转控制了生物气成藏要素的有利时空配置,控制了滇东北新生代盆地生物气藏的形成。中央断凹带及其与断褶带和斜坡带的过渡区带具有良好的生物气生成、运聚和保存条件,为生物气藏富集区带。  相似文献   

19.
Clarifying the geographic, environmental and behavioural contexts in which the emergence of anatomically modern Homo sapiens occurred has proved difficult, particularly because Africa lacked adequate geochronological, palaeontological and archaeological evidence. The discovery of anatomically modern Homo sapiens fossils at Herto, Ethiopia, changes this. Here we report on stratigraphically associated Late Middle Pleistocene artefacts and fossils from fluvial and lake margin sandstones of the Upper Herto Member of the Bouri Formation, Middle Awash, Afar Rift, Ethiopia. The fossils and artefacts are dated between 160,000 and 154,000 years ago by precise age determinations using the 40Ar/39Ar method. The archaeological assemblages contain elements of both Acheulean and Middle Stone Age technocomplexes. Associated faunal remains indicate repeated, systematic butchery of hippopotamus carcasses. Contemporary adult and juvenile Homo sapiens fossil crania manifest bone modifications indicative of deliberate mortuary practices.  相似文献   

20.
Homo floresiensis was recovered from Late Pleistocene deposits on the island of Flores in eastern Indonesia, but has the stature, limb proportions and endocranial volume of African Pliocene Australopithecus. The holotype of the species (LB1), excavated in 2003 from Liang Bua, consisted of a partial skeleton minus the arms. Here we describe additional H. floresiensis remains excavated from the cave in 2004. These include arm bones belonging to the holotype skeleton, a second adult mandible, and postcranial material from other individuals. We can now reconstruct the body proportions of H. floresiensis with some certainty. The finds further demonstrate that LB1 is not just an aberrant or pathological individual, but is representative of a long-term population that was present during the interval 95-74 to 12 thousand years ago. The excavation also yielded more evidence for the depositional history of the cave and for the behavioural capabilities of H. floresiensis, including the butchery of Stegodon and use of fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号