首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
利用2015年2月19日到20日太原气象观测站的降雪量资料及高时空分辨率的T639 0场预报资料,对太原市阳曲县暴雪天气过程进行分析。结果表明:阳曲县此次暴雪过程具有降雪时间较长、降雪较均匀的特点,500 h Pa西风浅槽及南支槽共同作用、700 h Pa和850 h Pa切变线、700 h Pa西南急流、地面高压后部偏南气流的共同作用是产生阳曲地区此次暴雪天气过程的环流背景条件;此次暴雪天气发生在较强的能量锋区以及高湿区和水汽通量辐合区内;暴雪气发生时,在河套地区上空形成一个由低层到高层的动力性的纬向垂直环流圈,为冷暖气流共同作用提供了持续不断的动力条件。  相似文献   

2.
利用常规气象观测资料、卫星云图、NCEP再分析资料详细分析了2011年1月16—18日低纬高原出现的强冷空气过程.结果表明:此次天气过程主要受深厚的南支槽、高低空急流和冷锋切变影响,南支槽和西南低空急流输送了大量水汽,并在云南中西部聚集,提供了有利的水汽条件;降雪区与TBB≤240 K冷云区基本吻合,TBB低值区的出现和消失,对降雪的增强和减弱有一定的预示作用.雷暴区和冰雹区位于TBB梯度最大处,TBB梯度增强和减弱对雷暴和冰雹天气的出现和减弱有一定的指示作用.降雪站近地层温度较低,整层水汽条件较好,低层有水汽辐合中心,上升运动强烈,且有低层辐合高层辐散的散度场配置.降雹站低层有逆温层,具备较大的不稳定能量、中层有干冷空气侵入,上升运动弱于降雪区,有低层辐合高层辐散的散度场配置.0℃层位于3 km左右的700 h Pa层附近,这个高度更有利于出现大冰雹.降水站水汽条件好,但水汽辐合强度弱于降雪区,上升运动强度与降雹区相当,没有低空辐合高空辐散的散度场.  相似文献   

3.
本文利用MICAPS系统中地面和高空资料、T639数值预报产品以及FY-2卫星云图资料,对2017年10月8~9日甘肃省中部强雨夹雪天气过程进行诊断分析。结果表明:(1)高空低槽东移南压,副高异常西伸北抬,是强雨雪天气产生的大尺度环流背景,地面低压倒槽、低层切变线、低涡及低面冷锋是为强雨夹雪发生提供了动力抬升和触发机制;(2)强雨夹雪天气落区位于高空急流入口区右,高空辐散低层辐合使得上升运动持续加强;(3)低空西南急流为强雨雪过程建立了水汽输送通道,甘肃中部700hPa露点差(T-Td)为1~2℃的饱和区,比湿达4~6 g/kg,提供了充沛的水汽条件;(4)卫星红外云图分析,过程前期降雨主要由中尺度对流性云团产生,降雪主要为稳定性降水云团及混合性降水云带产生,由于低空急流维持,低层水汽充沛,湿雪水含量大,是此次强雨夹雪天气产生的重要原因。  相似文献   

4.
卢秋芳 《江西科学》2021,39(5):901-908
为研究江西梅雨期暴雨的特点,利用常规观测资料、NCEP FNL再分析资料等对2019年6月9日和6月22日出现的2次区域性强暴雨天气过程进行了对比分析.结果表明:高空均处南亚高压东北侧脊线附近的反气旋环流辐散区中,500 hPa中层中高纬均为两槽一脊的形势,东北冷涡中心引出的东亚大槽引导槽后干冷空气南下,中低纬副热带高压稳定维持,中低层均有切变、低涡和低空急流配合是2次暴雨过程共同的环流背景特征;2次过程均存在对流性不稳定层结,利于暴雨强降水天气的出现,只是热力机制强度不同;低层切变、低涡和低空西南急流的共同作用是2次暴雨过程中相同的动力触发机制,水汽和稳定度条件满足的情况下,即使只是近地层的辐合抬升,也能触发不稳定能量的释放而造成强对流天气;低层切变、低空西南急流左侧或左前方强中心辐合带的位置是预报暴雨带位置的关键因素.  相似文献   

5.
通过分析NCAR CCM3气候模式的15年积分结果,从形成降水的垂直运动和水汽供应条件的角度,试图揭示该模式在东亚季风区产生不合理虚假强降水的可能原因.与观测的降水分布相比,CCM3模拟的东亚季风区降水中心位置偏西,雨量偏强,其中对流降水占虚假降水中心总降水量的82%左右.进一步分析发现,对流层上层200 hPa副热带急流南侧的散度季节变化与110°E以西的虚假降水季节变化具有较好的对应关系,急流入口区附近的直接垂直环流上升支位于青藏高原东北部,同时由于急流南侧对流层上层辐散引起的抽吸作用,加强低层的垂直运动,从而为虚假的强对流降水形成提供上升运动条件.分析对流层低层的水汽(比湿)分布和水汽输送表明,模拟的青藏高原地区大气的水汽含量比NCEP/NCAR再分析的水汽含量高,经过高原从孟加拉湾输送到虚假降水中心地区的水汽偏强,从而为虚假的强对流降水形成提供了充足的水汽条件.因此,在改进气候模式对东亚季风区虚假降水的模拟性能时,除了对模式物理过程做改进外,在青藏高原附近地区的水汽分布和水汽输送以及对流层上层西风急流位置和强度模拟的合理性方面也需要引起足够的重视.  相似文献   

6.
2010年1月3日致灾暴风雪天气成因分析   总被引:5,自引:0,他引:5  
利用常规观测资料和NCEP 1°×1°的6 h再分析资料,对2010年1月3日一次致灾暴风雪天气过程进行了观测和诊断分析.结果表明:本次暴风雪过程发生在强降雪出现之后,地面气压跃升、气温骤降、风力加强的时段里,即强冷空气入侵之后.此时,形成降雪的上升运动区由对流层中低层被抬升至对流层中高层,降雪明显减弱.在前期有充足降雪的情况下,暴风雪即可以发生在有降雪的条件下也可以发生在无降雪的条件下.强劲的高空急流对暴风雪的形成起到了重要作用.在初期降雪时段,高空急流出口区左前方的辐散区抽吸作用有利于产生强降雪;在后期吹雪时段,高空急流入口区左侧的辐合区动量下传,有利于地面大风和吹雪的形成.在850 hPa存在两支低空急流,一支配合着冷平流强西风急流,一支配合着暖平流南风急流,冷、暖两支低空急流的交汇直接影响暴风雪的发生.内蒙古高原地形较平坦,有利于大风的形成,大地形的汇流作用,有利于暴风雪的形成和持续.  相似文献   

7.
基于热带低压异常强降水对海南省造成的巨大影响,使用NCEP/NCAR再分析资料,对此次热带低压缓慢移动且长时间维持而引发的海南省强降水过程进行了诊断分析.结果表明:中层热带低压倒槽的移速快于低层,在暴雨区形成了一支自下而上向西倾斜的上升气流,海南岛暴雨区上空恰好存在着对称不稳定,斜升气流引起了对称不稳定能量的释放使低层不稳定发展,有利于海南岛暴雨的发生.受西太平洋副热带高压和北方大陆冷高压与南海热带低压冷暖系统相互作用,热带低压移动缓慢,对流层(副高西南侧)存在的这一支偏南风急流和850hPa的偏东或东南风气流含有丰富的水汽,使得热带低压强度较长时间维持存在.通过对各个物理量场分析表明:海南岛暴雨区域可以从水汽通量相对散度上看出来,且假相当位温的特征说明海南岛暴雨区域中、低层大气具有强不稳定性特征,垂直速度的分析发现低层辐合高层辐散也有利于此次强降水产生.  相似文献   

8.
利用常规观测资料和大理边界层风廓线资料,对2008年1月26~27日低空急流影响下滇西地区冬季强降水天气进行分析.结果表明:南支槽是主要影响系统,槽前的西南低空急流一方面为强降水区输送源源不断的暖湿空气,另一方面在暴雨区产生强辐合,强降水发生在水汽通量散度小于-20×10-8 g.hPa-1.cm-2.s-1的区域,水汽辐合与辐散相伴出现,强降水落区与水汽通量大值区及全风速大值区有很好的对应关系.低空急流出现最强时低层辐合、高层辐散及垂直速度也达到最强;高低空急流的脉动对强降水有一定的指示意义,低空急流的脉动与强降水之间存在密切关系,高空急流较低空急流的下传明显提前2~3 h,低空西南急流向下扩展的同时,可能存在动量下传,引起低空扰动加强.  相似文献   

9.
利用气象观测资料,本文对甘南春季的局地强降雪过程,通过环流形势和物理两场诊断等方面进行综合分析。结果表明:高原槽、切变线以及地面上的冷锋是这次暴雪的主要影响系统;物理量场的诊断分析中,相对湿度对于本次降雪过程中的湿度变化具有较好的指示意义;卫星云图反映了短波槽云系产生甘南高原边坡地带强降雪天气过程;多普勒雷达径向速度场上,高空存在的冷暖平流和高空急流,为强降雪提供了强烈的不稳定及上升运动条件。通过本次强降雪过程分析,为做好春季这类暴雪天气预报工作提供理论依据。  相似文献   

10.
利用柴达木盆地气象台站逐日降水资料和国际卫星云气候学计划D2资料分析了柴达木盆地夏季极端强降水、云量及云水资源的时空分布特征,结合NCEP/NCAR再分析资料对夏季极端强降水事件发生时的大气环流进行了分析.结果表明,夏季极端降水阈值和极端降水日数在柴达木盆地东部大于西部,极端降水量也明显增加.柴达木盆地各种云量的空间分布形态不一,云量上升趋势不明显.云水路径、固态云水和液态云水的空间分布形态一致,具有"南低北高"的特征,三者的线性趋势在年和四季尺度均明显上升.环流分析显示,极端强降水事件发生时,对流层上层,西风急流向北移动,柴达木盆地位于急流南侧,有异常反气旋式环流,对应高空辐散区;对流层中层,柴达木盆地位于异常偏强的槽区及槽前;对流层低层,柴达木盆地东部位势高度异常偏低,出现异常气旋式环流,对应低空辐合,这种高层辐散低层辐合的环流配置为极端强降水提供了良好的动力条件.柴达木盆地极端强降水的水汽来源为印度夏季风对热带海洋的水汽经青藏高原东侧输送;西风带对欧亚大陆的水汽输送;西北太平洋异常气旋式环流西北侧的异常偏北风的水汽输送.  相似文献   

11.
利用高空图、地面图、探空图等常规资料,多普勒雷达和风廓线雷达探测资料对2016年4月3日影响江西的强风雹天气过程进行了分析,结论如下:冷暖空气交汇、切变线趋于明显、强西南急流、中低层干舌、地面冷空气是此次强风雹天气发生的有利环流背景。同时气团极不稳定,不稳定能量强、水汽条件充沛、垂直风切变高,为强对流天气的发生、发展提供了不稳定、水汽与动力条件。多普勒雷达上强度50 d Bz以上快速东移的"弓形"飑线、中层径向辐合为大风的预报提供了依据。风廓线雷达上强对流天气发生前后有辐合系统过境,地面大风前有强西南急流下沉,3~4 km高空西南偏西急流迅速增强。  相似文献   

12.
利用常规气象资料,T639数值预报产品等资料对2014年6月19-22日抚州市出现连续性暴雨形成机制进行分析,结果表明:此次暴雨是在中高纬"两槽一脊"环流背景下产生,而中低层持续强劲的西南急流是这次暴雨的主要触发系统,持续的低空急流为暴雨区输送充足的水汽和不稳定能量,急流最大风速出口区辐合为暴雨形成提供了辐合上升的动力条件。过程期间,高低空散度场配置以及低空正涡度中心与强辐合区的叠加,表明在暴雨区内存在着大气上升运动。在大气处于高度不稳定状态下,地面存在辐合扰动,有利于中尺度对流系统的发生发展。  相似文献   

13.
利用1945—2008 JTWC公布的孟加拉湾风暴资料、NCEP/NCAR再分析资料和常规观测资料,对初夏造成云南强降水的孟湾风暴的大气环流特征进行了综合分析,得出:初夏孟湾风暴影响云南强降水时,其中心位于90°E附近,西太平洋副高588 dagpm线偏西,副高中心通常位于110°~120°E间,副高平均脊线位于15°~20°N之间,西脊点位于104°~108°E之间.孟湾风暴导致云南初夏强降水期间的环流特征:中高纬度地区维持北脊南槽的环流结构,印度北部到青藏高原北部为高压脊,高原南部至孟湾北部为低槽区;中南半岛至低纬高原地区为副高外围和槽前的西南暖湿气流控制,为云南强降水提供了充足的水汽和能量.同时,北部的冷平流和切变南下为云南的强降水提供了动力机制,致使云南产生强降水天气过程.低层西南急流的建立和维持是云南暴雨持续性维持的重要原因,孟湾风暴与不同的环流配置,其西南急流的分布也有所不同.  相似文献   

14.
2010—2011年冬季浙江两次强降雪天气过程对比分析   总被引:1,自引:0,他引:1  
 使用NCEP/NCAR 1°×1°格点资料,对2010—2011年冬季浙江两次强降雪进行了对比,通过对环流形势、水汽、动力、热力特征的诊断分析表明,2010年12月15日降雪过程是一次高空横槽转竖,地面强冷空气南下的冷过程,而2011年1月18—21日降雪过程是冷背景下西南气流北抬的暖过程;在700hPa两者都存在着西南气流的加强;850hPa,前者是东风急流,后者是西南风急流。两次降雪都有充分的水汽和强烈的垂直上升运动,前者能量锋区是南压的,而后者是南北波动的;两次降雪都满足温度场的基本条件,并具有逆温结构,前者的逆温层深厚,后者的比较浅薄。  相似文献   

15.
 利用常规观测、NCEP1°×1°再分析资料和中尺度WRF模式,对低纬高原云南2008年"2.28"强对流进行成因诊断和数值模拟研究,结果表明:此次复杂强对流在春季低温冷冻灾害和位势稳定背景下,由强垂直风切变、低层潮湿和足够水汽供应以及强抬升机制共同作用造成.过程中,强对流由强斜压不稳定释放诱发在低层湿舌附近;冰雹、雷雪上空-20 ℃温度层在450hPa层上少动, 0~-20 ℃温度梯度是冰雹大于雷雪的;降雹的饱和水汽团高度比雷雪高;垂直干位涡反映了对流层高层强位涡高值的强干冷西北气流向低层、低纬传送和中低层小位涡西南暖湿急流交汇特征.WRF模拟结果佐证了位势稳定条件下存在强垂直风切变会发生剧烈对流的事实,水平风、抬升凝结高度和最大对流有效位能等可为判断云南有无强对流及其种类提供参考依据.  相似文献   

16.
利用2018年1月2-8日淮河流域一次典型暴雪过程的风廓线雷达资料,分析水平风速、风向、垂直动量、大气折射率结构常数等参数,对暴雪的高低空风场及环流微观结构进行研究.结果表明,风廓线雷达在暴雪发生前就能探测到2.7 km高度左右形成的东北-西南切变,以及低层偏东风增强的风场变化,当2km高度内偏东风增大至约10m/s时...  相似文献   

17.
利用常规地面气象观测资料、雷达资料以及高空探测资料,对2016年5月19日至5月21日华南前汛期闽北地区暴雨过程成因进行分析并对欧洲中期天气预报中心ECMWF数值模式进行预报检验.结果表明:此次暴雨过程发生于高原槽东移,西南涡生成并东移,低层切变辐合,地面低压倒槽的大气环流背景下.西南急流为暴雨提供充足的水汽,在边界层中尺度辐合触发下不断地有对流云团的发展、东移进入闽北地区,具有一定的“列车效应”.欧洲中期天气预报中心ECMWF数值模式能够较好地模拟出暴雨发生期的风场和高度场特征,为暴雨的预报提供较好的指导作用.  相似文献   

18.
周振湘  童以鹏  江帆 《科技信息》2009,(31):I0383-I0384
利用天气图实时资料、数值预报产品、多普勒雷达图等从环流背景、物理量场诊断、雷达回波强度和速度等方面进行分析,结果显示这次暴雨过程是在高空低槽缓慢东移、冷空气扩散南下、中低层切变缓慢南压、低空西南急流稳定维持条件下,充沛的水汽条件、不稳定的能量的连续释放,较长时间的系统维持造成的。  相似文献   

19.
使用常规MICAPS天气图资料、地面气象要素、NCEP再分析资料,采用统计学、天气学和中尺度分析等方法,对2020年6―7月江西大暴雨过程中7月上旬连续性大暴雨过程进行分析,结果表明:1)2020年6—7月,江西共出现12次大暴雨过程,其中7月7—10日为历史罕见的连续性大暴雨和特大暴雨过程;2)中低层有深厚的水汽饱和区,明显的辐合、急流、高层辐散、中层的干侵入、925 hPa的超低空急流、中低层位置接近的切变线、前倾槽等有利于增加降水强度,暖式切变线与静止锋式切变线的稳定维持与中层弱的风场结构;3)雨带的稳定维持且移动缓慢,高的降水效率加上长的维持时间,导致连续性大暴雨的发生;4)大暴雨的平均场上,表现为中层风速偏弱,低层有风向与风速的切变线,前倾槽、高层辐合、低层辐散、高层负涡度、中层正涡度,强对流上升运动伸展至12 km以上、充足的水汽输送和强水汽辐合、高能、高湿等结构特征.最后,提出江西大暴雨概念模型.这些均为有效预测江西大暴雨过程提供参考与依据.  相似文献   

20.
 应用常规观测资料、FY-2C卫星云图和NCEP再分析资料,通过诊断分析研究了2010年12月11日发生在滇中及以南地区的云南暴雨天气过程.结果发现,这次冬季暴雨天气过程发生在有利的环流背景下,ITCZ位置偏北较活跃,孟湾存在大片对流云系,中印度洋10°N附近存在一支异常的大尺度西南气流,孟加拉湾低层有一个热带气旋生成,在卫星云图上表现出明显的气旋式云系,孟湾热带气旋和90°E附近的南支槽及槽前西南低空急流东移造成了这次暴雨天气过程;引发暴雨的水汽和能量由低空急流从孟加拉湾输送而来,充沛的水汽在云南上空强烈辐合,暴雨区θse呈陡立状,暴雨发生在低层辐合高层辐散的上升运动区,水汽通量散度辐合区和湿Q矢量辐合区与暴雨区对应较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号