首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hostetler SW  Bartlein PJ  Clark PU  Small EE  Solomon AM 《Nature》2000,405(6784):334-337
Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold event.  相似文献   

2.
Clift PD  Blusztajn J 《Nature》2005,438(7070):1001-1003
Uplift of mountains driven by tectonic forces can influence regional climate as well as regional drainage patterns, which in turn control the discharge of eroded sediment to the ocean. But the nature of the interactions between tectonic forces, climate and drainage evolution remains contested. Here we reconstruct the erosional discharge from the Indus river over the past 30 million years using seismic reflection data obtained from drill core samples from the Arabian Sea and neodymium isotope data. We find that the source of the Indus sediments was dominated by erosion within and north of the Indus suture zone until five million years ago; after that, the river began to receive more erosional products from Himalayan sources. We propose that this change in the erosional pattern is caused by a rerouting of the major rivers of the Punjab into the Indus, which flowed east into the Ganges river before that time. Seismic reflection profiles from the Indus fan suggest high mass accumulation rates during the Pleistocene epoch partly driven by increased drainage to the Indus river after five million years ago and partly by faster erosion linked to a stronger monsoon over the past four million years. Our isotope stratigraphy for the Indus fan provides strong evidence for a significant change in the geometry of western Himalayan river systems in the recent geologic past.  相似文献   

3.
Blard PH  Lavé J  Pik R  Wagnon P  Bourlès D 《Nature》2007,449(7162):591-594
The magnitude of atmospheric cooling during the Last Glacial Maximum and the timing of the transition into the current interglacial period remain poorly constrained in tropical regions, partly because of a lack of suitable climate records. Glacial moraines provide a method of reconstructing past temperatures, but they are relatively rare in the tropics. Here we present a reconstruction of atmospheric temperatures in the central Pacific during the last deglaciation on the basis of cosmogenic 3He ages of moraines and numerical modelling of the ice cap on Mauna Kea volcano, Hawaii--the only highland in the central Pacific on which moraines that formed during the last glacial period are preserved. Our reconstruction indicates that the Last Glacial Maximum occurred between 19,000 and 16,000 years ago in this region and that temperatures at high elevations were about 7 degrees C lower than today during this interval. Glacial retreat began about 16,000 years ago, but temperatures were still about 6.5 degrees C lower than today until 15,000 years ago. When combined with estimates of sea surface temperatures in the central Pacific Ocean, our reconstruction indicates that the lapse rate during the Last Glacial Maximum was higher than at present, which is consistent with the proposal that the atmosphere was drier at that time. Furthermore, the persistence of full glacial conditions until 15,000 years ago is consistent with the relatively late and abrupt transition to warmer temperatures in Greenland, indicating that there may have been an atmospheric teleconnection between the central Pacific and North Atlantic regions during the last deglaciation.  相似文献   

4.
Som SM  Catling DC  Harnmeijer JP  Polivka PM  Buick R 《Nature》2012,484(7394):359-362
According to the 'Faint Young Sun' paradox, during the late Archaean eon a Sun approximately 20% dimmer warmed the early Earth such that it had liquid water and a clement climate. Explanations for this phenomenon have invoked a denser atmosphere that provided warmth by nitrogen pressure broadening or enhanced greenhouse gas concentrations. Such solutions are allowed by geochemical studies and numerical investigations that place approximate concentration limits on Archaean atmospheric gases, including methane, carbon dioxide and oxygen. But no field data constraining ground-level air density and barometric pressure have been reported, leaving the plausibility of these various hypotheses in doubt. Here we show that raindrop imprints in tuffs of the Ventersdorp Supergroup, South Africa, constrain surface air density 2.7 billion years ago to less than twice modern levels. We interpret the raindrop fossils using experiments in which water droplets of known size fall at terminal velocity into fresh and weathered volcanic ash, thus defining a relationship between imprint size and raindrop impact momentum. Fragmentation following raindrop flattening limits raindrop size to a maximum value independent of air density, whereas raindrop terminal velocity varies as the inverse of the square root of air density. If the Archaean raindrops reached the modern maximum measured size, air density must have been less than 2.3?kg?m(-3), compared to today's 1.2?kg?m(-3), but because such drops rarely occur, air density was more probably below 1.3?kg?m(-3). The upper estimate for air density renders the pressure broadening explanation possible, but it is improbable under the likely lower estimates. Our results also disallow the extreme CO(2) levels required for hot Archaean climates.  相似文献   

5.
《Nature》2001,410(6824):27
  相似文献   

6.
《Nature》2002,419(6906):441
  相似文献   

7.
About 850,000 years ago, the period of the glacial cycles changed from 41,000 to 100,000 years. This mid-Pleistocene climate transition has been attributed to global cooling, possibly caused by a decrease in atmospheric carbon dioxide concentrations. However, evidence for such cooling is currently restricted to the cool upwelling regions in the eastern equatorial oceans, although the tropical warm pools on the western side of the ocean basins are particularly sensitive to changes in radiative forcing. Here we present high-resolution records of sea surface temperatures spanning the past 1.75 million years, obtained from oxygen isotopes and Mg/Ca ratios in planktonic foraminifera from the western Pacific warm pool. In contrast with the eastern equatorial regions, sea surface temperatures in the western Pacific warm pool are relatively stable throughout the Pleistocene epoch, implying little long-term change in the tropical net radiation budget. Our results challenge the hypothesis of a gradual decrease in atmospheric carbon dioxide concentrations as a dominant trigger of the longer glacial cycles since 850,000 years ago. Instead, we infer that the temperature contrast across the equatorial Pacific Ocean increased, which might have had a significant influence on the mid-Pleistocene climate transition.  相似文献   

8.
Cane MA  Molnar P 《Nature》2001,411(6834):157-162
Global climate change around 3-4 Myr ago is thought to have influenced the evolution of hominids, via the aridification of Africa, and may have been the precursor to Pleistocene glaciation about 2.75 Myr ago. Most explanations of these climatic events involve changes in circulation of the North Atlantic Ocean due to the closing of the Isthmus of Panama. Here we suggest, instead, that closure of the Indonesian seaway 3-4 Myr ago could be responsible for these climate changes, in particular the aridification of Africa. We use simple theory and results from an ocean circulation model to show that the northward displacement of New Guinea, about 5 Myr ago, may have switched the source of flow through Indonesia-from warm South Pacific to relatively cold North Pacific waters. This would have decreased sea surface temperatures in the Indian Ocean, leading to reduced rainfall over eastern Africa. We further suggest that the changes in the equatorial Pacific may have reduced atmospheric heat transport from the tropics to higher latitudes, stimulating global cooling and the eventual growth of ice sheets.  相似文献   

9.
Coxall HK  Wilson PA  Pälike H  Lear CH  Backman J 《Nature》2005,433(7021):53-57
The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.  相似文献   

10.
400Oa前中国洪水与文化的探讨   总被引:2,自引:0,他引:2  
从环境演变及环境考古等方面给其一个较为精确的定位,从气候、地质学角度分析了4 000 a前洪水的形成原因.同时,在史前时期,古文化的分布在很大程度上依赖环境条件,极端的水文事件或许会导致文化格局的重大调整,4 000 a的洪水对当时的文化造成了很大的冲击.  相似文献   

11.
12.
The role of African savannahs in the evolution of early hominins has been debated for nearly a century. Resolution of this issue has been hindered by difficulty in quantifying the fraction of woody cover in the fossil record. Here we show that the fraction of woody cover in tropical ecosystems can be quantified using stable carbon isotopes in soils. Furthermore, we use fossil soils from hominin sites in the Awash and Omo-Turkana basins in eastern Africa to reconstruct the fraction of woody cover since the Late Miocene epoch (about 7 million years ago). (13)C/(12)C ratio data from 1,300 palaeosols at or adjacent to hominin sites dating to at least 6 million years ago show that woody cover was predominantly less than ~40% at most sites. These data point to the prevalence of open environments at the majority of hominin fossil sites in eastern Africa over the past 6 million years.  相似文献   

13.
4000a前中国洪水与文化的探讨   总被引:1,自引:0,他引:1  
从环境演变及环境考古等方面给其一个较为精确的定位,从气候、地质学角度分析了4000a前洪水的形成原因.同时,在史前时期,古文化的分布在很大程度上依赖环境条件,极端的水文事件或许会导致文化格局的重大调整,4000a的洪水对当时的文化造成了很大的冲击.  相似文献   

14.
通过对一群亚裔加拿大社会服务从业者与来自其同一族裔社区的妇女工作的经验的描述 ,就文化适切实践模式对文化的假设提出质疑 ,并论述了文化的复杂性和多变性 ,阐述了文化适切实践的话语如何把殖民和种族权力的关系简约为文化问题。  相似文献   

15.
Dust has the potential to modify global climate by influencing the radiative balance of the atmosphere and by supplying iron and other essential limiting micronutrients to the ocean. Indeed, dust supply to the Southern Ocean increases during ice ages, and 'iron fertilization' of the subantarctic zone may have contributed up to 40?parts per million by volume (p.p.m.v.) of the decrease (80-100 p.p.m.v.) in atmospheric carbon dioxide observed during late Pleistocene glacial cycles. So far, however, the magnitude of Southern Ocean dust deposition in earlier times and its role in the development and evolution of Pleistocene glacial cycles have remained unclear. Here we report a high-resolution record of dust and iron supply to the Southern Ocean over the past four million years, derived from the analysis of marine sediments from ODP Site 1090, located in the Atlantic sector of the subantarctic zone. The close correspondence of our dust and iron deposition records with Antarctic ice core reconstructions of dust flux covering the past 800,000 years (refs 8, 9) indicates that both of these archives record large-scale deposition changes that should apply to most of the Southern Ocean, validating previous interpretations of the ice core data. The extension of the record beyond the interval covered by the Antarctic ice cores reveals that, in contrast to the relatively gradual intensification of glacial cycles over the past three million years, Southern Ocean dust and iron flux rose sharply at the Mid-Pleistocene climatic transition around 1.25 million years ago. This finding complements previous observations over late Pleistocene glacial cycles, providing new evidence of a tight connection between high dust input to the Southern Ocean and the emergence of the deep glaciations that characterize the past one million years of Earth history.  相似文献   

16.
Surface seawater was collected for ~(226)Ra measurement in the North Pacific Subtropical Gyre from July to October, 1999 and October to December, 2003. Combined with the historical data reported for this sea area, a declined trend of surface ~(226)Ra concentrations was observed since 1960s, indicating the ecosystem shift in response to global warming. On one side, the enhanced stratification of the upper water column resulting from global warming reduced the ~(226)Ra input from the depth, on the other, the temporal increase of biological production resulting from the climate-related ecosystem structure change strengthened the ~(226)Ra removal from the surface ocean. Both the physical and biological processes resulted in the decrease of surface ~(226)Ra concentrations in the North Pacific Subtropical Gyre. The temporal trend of surface ~(226)Ra concentrations was consistent with the trends of chlorophyll a, silicate, phosphate and primary production previously reported. This study provided ~(226)Ra evidence for the ecosystem shift under global change.  相似文献   

17.
Atmospheric carbon dioxide concentrations over the past 60 million years   总被引:48,自引:0,他引:48  
Pearson PN  Palmer MR 《Nature》2000,406(6797):695-699
Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.  相似文献   

18.
Kump LR  Barley ME 《Nature》2007,448(7157):1033-1036
The hypothesis that the establishment of a permanently oxygenated atmosphere at the Archaean-Proterozoic transition (approximately 2.5 billion years ago) occurred when oxygen-producing cyanobacteria evolved is contradicted by biomarker evidence for their presence in rocks 200 million years older. To sustain vanishingly low oxygen levels despite near-modern rates of oxygen production from approximately 2.7-2.5 billion years ago thus requires that oxygen sinks must have been much larger than they are now. Here we propose that the rise of atmospheric oxygen occurred because the predominant sink for oxygen in the Archaean era-enhanced submarine volcanism-was abruptly and permanently diminished during the Archaean-Proterozoic transition. Observations are consistent with the corollary that subaerial volcanism only became widespread after a major tectonic episode of continental stabilization at the beginning of the Proterozoic. Submarine volcanoes are more reducing than subaerial volcanoes, so a shift from predominantly submarine to a mix of subaerial and submarine volcanism more similar to that observed today would have reduced the overall sink for oxygen and led to the rise of atmospheric oxygen.  相似文献   

19.
Constant elevation of southern Tibet over the past 15 million years   总被引:53,自引:0,他引:53  
The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate and to influence monsoon intensity. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about uplift rates of the Tibetan plateau, but the precise history of the uplift of the plateau has yet to be confirmed by observations. Here we present well-preserved fossil leaf assemblages from the Namling basin, southern Tibet, dated to approximately 15 Myr ago, which allow us to reconstruct the temperatures within the basin at that time. Using a numerical general circulation model to estimate moist static energy at the location of the fossil leaves, we reconstruct the elevation of the Namling basin 15 Myr ago to be 4,689 +/- 895 m or 4,638 +/- 847 m, depending on the reference data used. This is comparable to the present-day altitude of 4,600 m. We conclude that the elevation of the southern Tibetan plateau probably has remained unchanged for the past 15 Myr.  相似文献   

20.
Lynts GW 《Nature》1970,225(5239):1226-1228
The subsidence history of the Bahamian Platform points to a non-uniform rate of sea-floor spreading since the beginning of the Cretaceous. Lower Cretaceous rates of perhaps 5 cm/yr led to an active trench system at the boundary between the American and Caribbean lithosphere plates, and the rapid subsidence of the continental margin produced graben faults on the Bahamian Platform and normal faults in Cuba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号