共查询到19条相似文献,搜索用时 46 毫秒
1.
模糊C-均值(FCM)聚类算法的改进 总被引:6,自引:0,他引:6
针对目前模糊C-均值聚类算法不适用于有噪声和样本不均衡等问题,借助改进算法AFCM和WFCM的思想,提出另一种新的聚类算法。它是AFCM和WAFCM结合的一种算法,但有着更好的健壮性和聚类效果。 相似文献
2.
模糊c-均值聚类算法(fuzzy C-means 简称FCM)和层次聚类算法是两种非常重要的聚类算法.由于FCM算法对初始聚类中心敏感,并且需要人为确定聚类类别数,这样收敛结果易陷入局部最优解.通过对这两种聚类算法的分析,首先对传统的凝聚层次聚类算法提出了改进,然后用改进的凝聚层次聚类算法得到最佳聚类数和初始聚类中心,最后用FCM算法进行再次聚类,以此得到更好的聚类结果并且减少了执行时间和迭代次数. 相似文献
3.
本文研究了模糊聚类方法,针对模糊C-均值(Fuzzy C-means Method,FCM)算法的不足,提出新的初始化算法方法,将其应于模糊聚类数目的初始化,结合近似K中心对FCM算法进行改进。实验表明,改进后的FCM算法要有效避免了聚类结果的局部最优,有较好的抗噪能力,从而提高模糊聚类性能和可靠性。 相似文献
4.
基于蚁群聚类算法的模糊神经网络 总被引:1,自引:0,他引:1
提出了一种基于蚁群聚类的模糊神经网络算法,神经网络采用RBF网络结点结构,聚类采用二级结构蚁群聚类算法作为一级聚类而模糊C-均值聚类(FCM)用于二级聚类。将上述聚类方法用于模糊神经网络构建中,仿真结果表明具有并行实时性、聚类能力强的特点。 相似文献
5.
通过将类间分离度函数引入到模糊C-均值聚类算法中,结合半监督的思想,建立基于信息熵的半监督模糊C-均值聚类模型,并对该模型的求解过程进行推导,提出一种新的算法.为了验证算法的有效性,将该算法在UCI数据集上进行实验,实验结果表明,该算法比仅引入信息熵的模糊C-均值聚类方法聚类性能更好. 相似文献
6.
由于现有模糊C-均值聚类算法固有的局限性,本文提出了一种改进的模糊C-均值聚类算法.首先用概率密度函数来确定初始聚类中心点和聚类数,其次用竞争学习思想提出使对手增加抑制因子来修改隶属度得到加快收敛速度的效果,最后提出用一个类内差异与类间差异兼备的新的有效性指标来作为迭代条件的目标函数.通过实验获取参数的最优取值范围,通过与经典模糊C-均值聚类算法的比较,证明了该改进算法不仅加快了收敛速度,而且在聚类结果的质量上有一定程度的提高. 相似文献
7.
一种改进的模糊C-均值(FCM)聚类算法 总被引:9,自引:1,他引:9
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 相似文献
8.
模糊C-均值聚类算法通过迭代的爬山技术来寻找问题的最优解,是一种局部搜索算法,容易受初始值的影响而陷入局部极小值.遗传算法是一种应用广泛的全局优化算法,是一种与求解问题无关的算法模式,能够有效解决模糊C-均值聚类算法对初始化敏感的问题,利用改进后的遗传算法能更好地解决聚类问题. 相似文献
9.
10.
文章阐述了模糊C-均值聚类算法(FCM)原理及存在的缺点,通过将粒子群优化算法思想应用到模糊聚类算法中,对模糊聚类算法进行了优化设计.实验证明,改进的算法具有较好的全局最优解,克服了传统模糊C聚类算法的不足,聚类效果优于单一使用FCM算法. 相似文献
11.
石先军 《武汉科技学院学报》2003,16(6):51-53
非线性混合整数规划问题是一类NP难题,针对这类问题的特点,本文提出一种改进的遗传算法一分支遗传算法(BGAS).并将其用于Sandgren提供的压力容器设计优化问题,得到了很好的结果。 相似文献
12.
基于全局空间相似性的模糊聚类算法 总被引:1,自引:0,他引:1
用传统模糊C均值聚类算法分割图像时,类内数据空间分布离散.针对这一问题,提出一种基于全局空间相似性模糊聚类算法.算法建立全局空间相似性度量标准和全局灰度相似性度量标准,分别计算图像中任意一点与聚类中心点的空间相似性和灰度相似性;通过调整参数来控制两种特征在节点间差异计算中所占的比重,增强了分割结果中类内数据样本空间分布的连续性.分别对3类具有不同特征的图像进行仿真实验,结果表明,与传统FCM算法相比,本文算法分割结果更加精确,更能满足用户的实际需要。 相似文献
13.
基于多阶段的模糊C-均值算法的模糊聚类分析研究 总被引:8,自引:0,他引:8
对模糊聚类分析算法进行研究,在模糊C- 均值算法(FCM)的基础上加以改进,将聚类过程分为二个阶段,形成多阶段模糊C- 均值算法(MFCM),使其对Iris数据聚类.研究表明:多阶段的模糊C- 均值算法比模糊C- 均值算法性能优越. 相似文献
14.
提出了多目标监督聚类GA算法,即:根据样本的类标签有监督地将样本聚类,在每个类中根据样本属性的相似性有监督地聚成类簇.如果分属不同类标签的类簇出现相交,则相交类簇再次聚类,直到所有类簇均不相交.适应度矢量函数由类簇数和类内距离2个目标确定,类簇数和类簇中心由目标函数自动确定,从而类簇数和中心就不受主观因素的影响,并且保证了这2个关键要素的优化性质.预测分类时,删去单点类簇,并根据类簇号和离某个类簇中心距离的最近邻法则以及该类簇的类标签进行分类.算法模型采用C#实现,采用3个UCI数据集进行实例分析,实验结果表明,本算法优于著名的Native Bayes、Boost C4.5和KNN算法. 相似文献
15.
张义良 《萍乡高等专科学校学报》2006,(3):43-45
遗传算法(Genetic Algorithm,简称GA)是一类模拟生物界的进化规律(适者生存,优胜劣汰遗传机制)而形成的一种最适应全局优化概率搜索算法。针对常规动态聚类方法对初始聚类中心的敏感性以及聚类结果与样本输入次序有关等问题,本文提出了一种基于GA的动态聚类方法,并将它应用到数据库的数据分析中。计算结果表明,该方法是一个具有全局最优解的动态聚类方法,其结果明显好于K-均值聚类算法。 相似文献
16.
一种改进的Fuzzy c—means聚类算法 总被引:2,自引:0,他引:2
该文提出了一种改进的fuzzy c-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzy c-means的速度,证明了MCM与FMC在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FMC空间复杂性的关系。最后数值实验证实了结论。 相似文献
17.
18.
19.
在无线传感器网络体系结构中,网络层的路由技术对 WSN 的性能好坏有着重要的影响。LEACH(Low-Energy Adaptive Clustering Hierarchy)是无线传感器网络中最早提出的分簇路由协议,它的成簇思想贯穿于其后发展出的很多分簇路由协议中。但 LEACH 算法还有很多不足,提出了基于FCM(模糊C均值聚类)的无线传感器网络分簇多跳路由算法。 相似文献