首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The subventricular zone (SVZ) is a principal source of adult neural stem cells in the rodent brain, generating thousands of olfactory bulb neurons every day. If the adult human brain contains a comparable germinal region, this could have considerable implications for future neuroregenerative therapy. Stem cells have been isolated from the human brain, but the identity, organization and function of adult neural stem cells in the human SVZ are unknown. Here we describe a ribbon of SVZ astrocytes lining the lateral ventricles of the adult human brain that proliferate in vivo and behave as multipotent progenitor cells in vitro. This astrocytic ribbon has not been observed in other vertebrates studied. Unexpectedly, we find no evidence of chains of migrating neuroblasts in the SVZ or in the pathway to the olfactory bulb. Our work identifies SVZ astrocytes as neural stem cells in a niche of unique organization in the adult human brain.  相似文献   

3.
Adult neural stem cells-Functional potential and therapeutic applications   总被引:4,自引:0,他引:4  
The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.  相似文献   

4.
Proliferating bipotential glial progenitor cells in adult rat optic nerve   总被引:19,自引:0,他引:19  
C Ffrench-Constant  M C Raff 《Nature》1986,319(6053):499-502
We have shown previously that the rat optic nerve contains three types of macroglial cells--oligodendrocytes and two types of astrocytes--which develop as two distinct lineages. Type-1 astrocytes develop from one type of precursor cell beginning at embryonic day 16 (E16), while oligodendrocytes and then type-2 astrocytes develop from a common, bipotential progenitor cell beginning at birth (E21) and postnatal days 7-10 (P7-10), respectively. Here we report that proliferating bipotential oligodendrocyte-type-2 astrocyte (0-2A) progenitor cells are present in the adult rat optic nerve, raising the possibility that these cells are produced continually from self-renewing stem cells throughout life.  相似文献   

5.
Pax3 functions at a nodal point in melanocyte stem cell differentiation   总被引:2,自引:0,他引:2  
Lang D  Lu MM  Huang L  Engleka KA  Zhang M  Chu EY  Lipner S  Skoultchi A  Millar SE  Epstein JA 《Nature》2005,433(7028):884-887
  相似文献   

6.
Ahn S  Joyner AL 《Nature》2005,437(7060):894-897
Sonic hedgehog (Shh) has been implicated in the ongoing neurogenesis in postnatal rodent brains. Here we adopted an in vivo genetic fate-mapping strategy, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of Shh-responding cells in the adult mouse forebrain. We show that initially, only a small population of cells (including both quiescent neural stem cells and transit-amplifying cells) responds to Shh in regions undergoing neurogenesis. This population subsequently expands markedly to continuously provide new neurons in the forebrain. Our study of the behaviour of quiescent neural stem cells provides in vivo evidence that they can self-renew for over a year and generate multiple cell types. Furthermore, we show that the neural stem cell niches in the subventricular zone and dentate gyrus are established sequentially and not until late embryonic stages.  相似文献   

7.
The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.  相似文献   

8.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

9.
近年来神经干细胞已在成年哺乳动物中的中枢神经系统中分离成功。神经干细胞的最基本特征是具有分化为神经元、星状胶质细胞和少突胶质细胞的潜能,具有自我更新能力,并足以维持整个大脑所需。神经干细胞在修复受伤神经组织及治疗神经系统退行性疾病,如帕金森病、阿尔茨海默病、和亨庭顿病等方面有很好的应用前景。但在达到临床实际应用之前仍有一系列问题需要解决,最首要的是搞清神经干细胞的分化机制。  相似文献   

10.
Clayton E  Doupé DP  Klein AM  Winton DJ  Simons BD  Jones PH 《Nature》2007,446(7132):185-189
According to the current model of adult epidermal homeostasis, skin tissue is maintained by two discrete populations of progenitor cells: self-renewing stem cells; and their progeny, known as transit amplifying cells, which differentiate after several rounds of cell division. By making use of inducible genetic labelling, we have tracked the fate of a representative sample of progenitor cells in mouse tail epidermis at single-cell resolution in vivo at time intervals up to one year. Here we show that clone-size distributions are consistent with a new model of homeostasis involving only one type of progenitor cell. These cells are found to undergo both symmetric and asymmetric division at rates that ensure epidermal homeostasis. The results raise important questions about the potential role of stem cells on tissue maintenance in vivo.  相似文献   

11.
The classical view of neural plate development held that it arises from the ectoderm, after its separation from the mesodermal and endodermal lineages. However, recent cell-lineage-tracing experiments indicate that the caudal neural plate and paraxial mesoderm are generated from common bipotential axial stem cells originating from the caudal lateral epiblast. Tbx6 null mutant mouse embryos which produce ectopic neural tubes at the expense of paraxial mesoderm must provide a clue to the regulatory mechanism underlying this neural versus mesodermal fate choice. Here we demonstrate that Tbx6-dependent regulation of Sox2 determines the fate of axial stem cells. In wild-type embryos, enhancer N1 of the neural primordial gene Sox2 is activated in the caudal lateral epiblast, and the cells staying in the superficial layer sustain N1 activity and activate Sox2 expression in the neural plate. In contrast, the cells destined to become mesoderm activate Tbx6 and turn off enhancer N1 before migrating into the paraxial mesoderm compartment. In Tbx6 mutant embryos, however, enhancer N1 activity persists in the paraxial mesoderm compartment, eliciting ectopic Sox2 activation and transforming the paraxial mesoderm into neural tubes. An enhancer-N1-specific deletion mutation introduced into Tbx6 mutant embryos prevented this Sox2 activation in the mesodermal compartment and subsequent development of ectopic neural tubes, indicating that Tbx6 regulates Sox2 via enhancer N1. Tbx6-dependent repression of Wnt3a in the paraxial mesodermal compartment is implicated in this regulatory process. Paraxial mesoderm-specific misexpression of a Sox2 transgene in wild-type embryos resulted in ectopic neural tube development. Thus, Tbx6 represses Sox2 by inactivating enhancer N1 to inhibit neural development, and this is an essential step for the specification of paraxial mesoderm from the axial stem cells.  相似文献   

12.
In degenerative disorders of the central nervous system (CNS), transplantation of neural multipotent (stem) precursor cells (NPCs) is aimed at replacing damaged neural cells. Here we show that in CNS inflammation, NPCs are able to promote neuroprotection by maintaining undifferentiated features and exerting unexpected immune-like functions. In a mouse model of chronic CNS inflammation, systemically injected adult syngeneic NPCs use constitutively activated integrins and functional chemokine receptors to selectively enter the inflamed CNS. These undifferentiated cells survive repeated episodes of CNS inflammation by accumulating within perivascular areas where reactive astrocytes, inflamed endothelial cells and encephalitogenic T cells produce neurogenic and gliogenic regulators. In perivascular CNS areas, surviving adult NPCs induce apoptosis of blood-borne CNS-infiltrating encephalitogenic T cells, thus protecting against chronic neural tissue loss as well as disease-related disability. These results indicate that undifferentiated adult NPCs have relevant therapeutic potential in chronic inflammatory CNS disorders because they display immune-like functions that promote long-lasting neuroprotection.  相似文献   

13.
De novo cardiomyocytes from within the activated adult heart after injury   总被引:2,自引:0,他引:2  
A significant bottleneck in cardiovascular regenerative medicine is the identification of a viable source of stem/progenitor cells that could contribute new muscle after ischaemic heart disease and acute myocardial infarction. A therapeutic ideal--relative to cell transplantation--would be to stimulate a resident source, thus avoiding the caveats of limited graft survival, restricted homing to the site of injury and host immune rejection. Here we demonstrate in mice that the adult heart contains a resident stem or progenitor cell population, which has the potential to contribute bona fide terminally differentiated cardiomyocytes after myocardial infarction. We reveal a novel genetic label of the activated adult progenitors via re-expression of a key embryonic epicardial gene, Wilm's tumour 1 (Wt1), through priming by thymosin β4, a peptide previously shown to restore vascular potential to adult epicardium-derived progenitor cells with injury. Cumulative evidence indicates an epicardial origin of the progenitor population, and embryonic reprogramming results in the mobilization of this population and concomitant differentiation to give rise to de novo cardiomyocytes. Cell transplantation confirmed a progenitor source and chromosome painting of labelled donor cells revealed transdifferentiation to a myocyte fate in the absence of cell fusion. Derived cardiomyocytes are shown here to structurally and functionally integrate with resident muscle; as such, stimulation of this adult progenitor pool represents a significant step towards resident-cell-based therapy in human ischaemic heart disease.  相似文献   

14.
Wnt信号通路在胚胎发育过程中参与背腹轴的形成、细胞极性的建立以及决定细胞命运.利用干细胞定向分化模型可在体外培养条件下探索Wnt信号通路在哺乳动物早期胚胎发育过程中的分子机理,了解其信号网络对干细胞定向分化中各个事件的调控机制.本文通过综合近期Wnt信号通路的研究,阐述经典Wnt信号通路(Canonical Wnt signaling pathway)在干细胞定向分化中的作用.  相似文献   

15.
The subventricular zone of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially oriented chains that coalesce into a rostral migratory stream (RMS) connecting the subventricular zone to the olfactory bulb. The adult human subventricular zone, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes. Some of these subventricular zone astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report found few subventricular zone proliferating cells and rare migrating immature neurons in the RMS of adult humans. In contrast, a subsequent study indicated robust proliferation and migration in the human subventricular zone and RMS. Here we find that the infant human subventricular zone and RMS contain an extensive corridor of migrating immature neurons before 18 months of age but, contrary to previous reports, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human subventricular zone are destined for the olfactory bulb--we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal subventricular zone and cortex. These pathways represent potential targets of neurological injuries affecting neonates.  相似文献   

16.
Organogenesis is dependent on the formation of distinct cell types within the embryo. Important to this process are the hox genes, which are believed to confer positional identities to cells along the anteroposterior axis. Here, we have identified the caudal-related gene cdx4 as the locus mutated in kugelig (kgg), a zebrafish mutant with an early defect in haematopoiesis that is associated with abnormal anteroposterior patterning and aberrant hox gene expression. The blood deficiency in kgg embryos can be rescued by overexpressing hoxb7a or hoxa9a but not hoxb8a, indicating that the haematopoietic defect results from perturbations in specific hox genes. Furthermore, the haematopoietic defect in kgg mutants is not rescued by scl overexpression, suggesting that cdx4 and hox genes act to make the posterior mesoderm competent for blood development. Overexpression of cdx4 during zebrafish development or in mouse embryonic stem cells induces blood formation and alters hox gene expression. Taken together, these findings demonstrate that cdx4 regulates hox genes and is necessary for the specification of haematopoietic cell fate during vertebrate embryogenesis.  相似文献   

17.
The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号