首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in BRCA1 (ref. 1) confer an increased risk of female breast cancer. In a genome-wide scan of linkage disequilibrium (LD), a high level of LD was detected among microsatellite markers flanking BRCA1 (ref. 3), raising the prospect that positive natural selection may have acted on this gene. We have used the predictions of evolutionary genetic theory to investigate this further. Using phylogeny-based maximum likelihood analysis of the BRCA1 sequences from primates and other mammals, we found that the ratios of replacement to silent nucleotide substitutions on the human and chimpanzee lineages were not different from one another (P=0.8), were different from those of other primate lineages (P=0.004) and were greater than 1 (P=0.04). This is consistent with the historic occurrence of positive darwinian selection pressure on the BRCA1 protein in the human and chimpanzee lineages. Analysis of genetic variation in a sample of female Australians of Northern European origin showed evidence for Hardy-Weinberg (HW) disequilibrium at polymorphic sites in BRCA1, consistent with the possibility that natural selection is affecting genotype frequencies in modern Europeans. The clustering of between-species variation in the region of the gene encoding the RAD51-interaction domain of BRCA1 suggests the maintenance of genomic integrity as a possible target of selection.  相似文献   

2.
Ehlers-Danlos (ED) syndrome type VII is characterized by the accumulation of collagen precursors in connective tissues. ED VII A and B are caused by mutations in the genes of alpha 1 and alpha 2 collagen I which result in the disruption of the cleavage site of procollagen I N-proteinase. The existence of ED VII C in humans has been hypothesized on the basis of a disorder in cattle and sheep related to the absence of the enzyme. We now present evidence for the existence of this disease in humans, characterized by skin fragility, altered polymers seen as hieroglyphic pictures with electron microscopy, accumulation of p-N-alpha 1 and p-N-alpha 2 collagen type I in the dermis and absence of processing of the p-N-I polypeptides in fibroblast cultures.  相似文献   

3.
Pál C  Hurst LD 《Nature genetics》2003,33(3):392-395
There is increasing evidence in eukaryotic genomes that gene order is not random, even allowing for tandem duplication. Notably, in numerous genomes, genes of similar expression tend to be clustered. Are there other reasons for clustering of functionally similar genes? If genes are linked to enable genetic, rather than physical clustering, then we also expect that clusters of certain genes might be associated with blocks of reduced recombination rates. Here we show that, in yeast, essential genes are highly clustered and this clustering is independent of clustering of co-expressed genes and of tandem duplications. Adjacent pairs of essential genes are preferentially conserved through evolution. Notably, we also find that clusters of essential genes are in regions of low recombination and that larger clusters have lower recombination rates. These results suggest that selection acts to modify both the fine-scale intragenomic variation in the recombination rate and the distribution of genes and provide evidence for co-evolution of gene order and recombination rate.  相似文献   

4.
The budding yeast Saccharomyces cerevisiae has been used by humans for millennia to make wine, beer and bread. More recently, it became a key model organism for studies of eukaryotic biology and for genomic analysis. However, relatively little is known about the natural lifestyle and population genetics of yeast. One major question is whether genetically diverse yeast strains mate and recombine in the wild. We developed a method to infer the evolutionary history of a species from genome sequences of multiple individuals and applied it to whole-genome sequence data from three strains of Saccharomyces cerevisiae and the sister species Saccharomyces paradoxus. We observed a pattern of sequence variation among yeast strains in which ancestral recombination events lead to a mosaic of segments with shared genealogy. Based on sequence divergence and the inferred median size of shared segments (approximately 2,000 bp), we estimated that although any two strains have undergone approximately 16 million cell divisions since their last common ancestor, only 314 outcrossing events have occurred during this time (roughly one every 50,000 divisions). Local correlations in polymorphism rates indicate that linkage disequilibrium in yeast should extend over kilobases. Our results provide the initial foundation for population studies of association between genotype and phenotype in S. cerevisiae.  相似文献   

5.
Intergenerational mixing of DNA through meiotic recombinations of homologous chromosomes during gametogenesis is a major event that generates diversity in the eukaryotic genome. We examined genome-wide microsatellite data for 23,066 individuals, providing information on recombination events of 14,140 maternal and paternal meioses each, and found a positive correlation between maternal recombination counts of an offspring and maternal age. We postulated that the recombination rate of eggs does not increase with maternal age, but that the apparent increase is the consequence of selection. Specifically, a high recombination count increased the chance of a gamete becoming a live birth, and this effect became more pronounced with advancing maternal age. Further support for this hypothesis came from our observation that mothers with high oocyte recombination rate tend to have more children. Hence, not only do recombinations have a role in evolution by yielding diverse combinations of gene variants for natural selection, but they are also under selection themselves.  相似文献   

6.
Human DNA diversity arises ultimately from germline mutation that creates new haplotypes that can be reshuffled by meiotic recombination. Reciprocal crossover generates recombinant haplotypes but should not influence the frequencies of alleles in a population. We demonstrate crossover asymmetry at a recombination hot spot in the major histocompatibility complex, whereby reciprocal exchanges in sperm map to different locations in the hot spot. We identify a single-nucleotide polymorphism at the center of the hot spot and show that, when heterozygous, it seems sufficient to cause this asymmetry, apparently by influencing the efficiency of highly localized crossover initiation. As a consequence, crossovers in heterozygotes are accompanied by biased gene conversion, most likely occurring by gap repair, that can also affect nearby polymorphisms through repair of an extended gap. The result is substantial over-transmission of the recombination-suppressing allele and neighboring markers to crossover products. Computer simulations show that this meiotic drive, although weak at the population level, is sufficient to favor eventual fixation of the recombination-suppressing variant. These findings provide an explanation for the relatively uniform widths of human crossover hot spots and suggest that hot spots may be generally prone to extinction by meiotic drive.  相似文献   

7.
Recent studies of human populations suggest that the genome consists of chromosome segments that are ancestrally conserved ('haplotype blocks'; refs. 1-3) and have discrete boundaries defined by recombination hot spots. Using publicly available genetic markers, we have constructed a first-generation haplotype map of chromosome 19. As expected for this marker density, approximately one-third of the chromosome is encompassed within haplotype blocks. Evolutionary modeling of the data indicates that recombination hot spots are not required to explain most of the observed blocks, providing that marker ascertainment and the observed marker spacing are considered. In contrast, several long blocks are inconsistent with our evolutionary models, and different mechanisms could explain their origins.  相似文献   

8.
Cancer progression is often associated with the accumulation of gross chromosomal rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions or inversions. In many instances, GCRs inactivate tumour-suppressor genes or generate novel fusion proteins that initiate carcinogenesis. The mechanism underlying GCR formation appears to involve interactions between DNA sequences of little or no homology. We previously demonstrated that mutations in the gene encoding the largest subunit of the Saccharomyces cerevisiae single-stranded DNA binding protein (RFA1) increase microhomology-mediated GCR formation. To further our understanding of GCR formation, we have developed a novel mutator assay in S. cerevisiae that allows specific detection of such events. In this assay, the rate of GCR formation was increased 600-5, 000-fold by mutations in RFA1, RAD27, MRE11, XRS2 and RAD50, but was minimally affected by mutations in RAD51, RAD54, RAD57, YKU70, YKU80, LIG4 and POL30. Genetic analysis of these mutants suggested that at least three distinct pathways can suppress GCRs: two that suppress microhomology-mediated GCRs (RFA1 and RAD27) and one that suppresses non-homology-mediated GCRs (RAD50/MRE11/XRS2).  相似文献   

9.
Variation in the human genome sequence is key to understanding susceptibility to disease in modern populations and the history of ancestral populations. Unlocking this information requires knowledge of the patterns and underlying causes of human sequence diversity. By applying a new population-genetic framework to two genome-wide polymorphism surveys, we find that the human genome contains sizeable regions (stretching over tens of thousands of base pairs) that have intrinsically high and low rates of sequence variation. We show that the primary determinant of these patterns is shared genealogical history. Only a fraction of the variation (at most 25%) is due to the local mutation rate. By measuring the average distance over which genealogical histories are typically preserved, these data provide the first genome-wide estimate of the average extent of correlation among variants (linkage disequilibrium). The results are best explained by extreme variability in the recombination rate at a fine scale, and provide the first empirical evidence that such recombination 'hot spots' are a general feature of the human genome and have a principal role in shaping genetic variation in the human population.  相似文献   

10.
Telomere dysfunction and evolution of intestinal carcinoma in mice and humans   总被引:28,自引:0,他引:28  
Telomerase activation is a common feature of advanced human cancers and facilitates the malignant transformation of cultured human cells and in mice. These experimental observations are in accord with the presence of robust telomerase activity in more advanced stages of human colorectal carcinogenesis. However, the occurrence of colon carcinomas in telomerase RNA (Terc)-null, p53-mutant mice has revealed complex interactions between telomere dynamics, checkpoint responses and carcinogenesis. We therefore sought to determine whether telomere dysfunction exerts differential effects on cancer initiation versus progression of mouse and human intestinal neoplasia. In successive generations of ApcMin Terc-/- mice, progressive telomere dysfunction led to an increase in initiated lesions (microscopic adenomas), yet a significant decline in the multiplicity and size of macroscopic adenomas. That telomere dysfunction also contributes to human colorectal carcinogenesis is supported by the appearance of anaphase bridges (a correlate of telomere dysfunction) at the adenoma-early carcinoma transition, a transition recognized for marked chromosomal instability. Together, these data are consistent with a model in which telomere dysfunction promotes the chromosomal instability that drives early carcinogenesis, while telomerase activation restores genomic stability to a level permissive for tumor progression. We propose that early and transient telomere dysfunction is a major mechanism underlying chromosomal instability of human cancer.  相似文献   

11.
12.
13.
PAX6 is widely expressed in the central nervous system. Heterozygous PAX6 mutations in human aniridia cause defects that would seem to be confined to the eye. Magnetic resonance imaging (MRI) and smell testing reveal the absence or hypoplasia of the anterior commissure and reduced olfaction in a large proportion of aniridia cases, which shows that PAX6 haploinsuffiency causes more widespread human neuro developmental anomalies.  相似文献   

14.
The Escherichia coli gene recQ was identified as a RecF recombination pathway gene. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes.  相似文献   

15.
The extent of DNA sequence variation of chimpanzees is several-fold greater than that of humans. It is unclear, however, if humans or chimpanzees are exceptional among primates in having low and high amounts of DNA sequence diversity, respectively. To address this, we have determined approximately 10,000 bp of noncoding DNA sequences at Xq13.3 (which has been extensively studied in both humans and chimpanzees) from 10 western lowland gorillas (Gorilla gorilla gorilla) and 1 mountain gorilla (Gorilla gorilla beringei; that is, from 2 of the 3 currently recognized gorilla subspecies), as well as 8 Bornean (Pongo pygmaeus pygmaeus) and 6 Sumatran (Pongo pygmaeus abelii) orang-utans, representing both currently recognized orang-utan subspecies. We show that humans differ from the great apes in having a low level of genetic variation and a signal of population expansion.  相似文献   

16.
More than 5 million single-nucleotide polymorphisms (SNPs) with minor-allele frequency greater than 10% are expected to exist in the human genome. Some of these SNPs may be associated with risk of developing common diseases. To assess the power of currently available SNPs to detect such associations, we resequenced 50 genes in two ethnic samples and measured patterns of linkage disequilibrium between the subset of SNPs reported in dbSNP and the complete set of common SNPs. Our results suggest that using all 2.7 million SNPs currently in the database would detect nearly 80% of all common SNPs in European populations but only 50% of those common in the African American population and that efficient selection of a minimal subset of SNPs for use in association studies requires measurement of allele frequency and linkage disequilibrium relationships for all SNPs in dbSNP.  相似文献   

17.
Hydatidiform mole (HM) is an abnormal human pregnancy with no embryo and cystic degeneration of placental villi. We report five mutations in the maternal gene NALP7 in individuals with familial and recurrent HMs. NALP7 is a member of the CATERPILLER protein family involved in inflammation and apoptosis. NALP7 is the first maternal effect gene identified in humans and is also responsible for recurrent spontaneous abortions, stillbirths and intrauterine growth retardation.  相似文献   

18.
19.
20.
Ichthyoses comprise a heterogeneous group of genodermatoses characterized by abnormal desquamation over the whole body, for which the genetic causes of several human forms remain unknown. We used a spontaneous dog model in the golden retriever breed, which is affected by a lamellar ichthyosis resembling human autosomal recessive congenital ichthyoses (ARCI), to carry out a genome-wide association study. We identified a homozygous insertion-deletion (indel) mutation in PNPLA1 that leads to a premature stop codon in all affected golden retriever dogs. We subsequently found one missense and one nonsense mutation in the catalytic domain of human PNPLA1 in six individuals with ARCI from two families. Further experiments highlighted the importance of PNPLA1 in the formation of the epidermal lipid barrier. This study identifies a new gene involved in human ichthyoses and provides insights into the localization and function of this yet uncharacterized member of the PNPLA protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号