共查询到18条相似文献,搜索用时 78 毫秒
1.
针对基因间共调控关系的特点和现有共调控基因聚类分析方法的不足,提出一种基于广义信息论中二次互信息的广义相似性度量标准QMISM,并利用免疫遗传算法将高维样本映射到二维空间,进而实现动态模糊聚类和聚类结果可视化.对人工合成数据和真实的基因表达数据的实验结果表明,该算法能得到更好的聚类结果. 相似文献
2.
提出一种新的聚类算法——层次谱聚类算法.该算法在传统二分的SM谱聚类的过程中嵌入了层次聚类算法,目的是为了提高谱聚类的聚类正确率,同时又利用谱聚类纠正了层次聚类过程中所得到的歪斜划分.实验结果表明:提出的层次谱聚类算法的聚类正确率比层次聚类算法、谱聚类算法的聚类正确率都要高,同时又纠正了层次聚类过程中的歪斜划分. 相似文献
3.
基于并行免疫遗传算法基因表达数据的动态模糊聚类 总被引:5,自引:1,他引:4
提出一种改进的并行免疫遗传算法, 通过在群体规模上引入“岛”的概念, 实现了可变的群体规模; 通过在适应度函数内引入免疫算子, 避免了算法过早收敛. 因此, 解决了寻优算法中局部收敛的困扰, 提高了获得全局最优解的几率. 把此算法应用于斯坦福大学酵母细胞周期表达数据库的数据进行共表达聚类, 并将实验结果与Spellman按照功能基因组学进行聚类所得结果进行了对比, 证明了所给算法在功能基因组学聚类上的有效性. 相似文献
4.
一种基于遗传算法的模糊聚类 总被引:21,自引:0,他引:21
对模糊c均值聚类算法(FCM算法)进行了讨论,说明FCM算法一般得不到全局最优分类,因此结合FCM算法提出了用遗传算法进行寻优求解,从而将遗传算法用于模糊聚类分析,最后的实例表明,遗传算法在处理多样本、多属性、多类别问题时,是一种有效的方法。 相似文献
5.
传统的模糊C均值聚类算法及其变型在聚类过程中都假设所有的属性对聚类贡献相同,所以很难发现隐藏在部分属性中的类结构,也难以识别出重要属性.在实际应用中,噪声属性较为常见,并且会影响正常的聚类过程.鉴于以上原因,提出了一种新的基于属性加权的模糊C均值聚类算法,通过对人工数据和实际数据的聚类测试结果,证实了该算法的有效性. 相似文献
6.
传统基于目标函数法的模糊聚类算法是一种迭代的“爬山”算法,容易陷入局部最优解.提出了基于遗传算法与禁忌搜索结合的模糊聚类算法,综合运用遗传算法的多出发点和禁忌搜索的记忆性来改善聚类的效果,并通过迭代的遗传禁忌搜索算法产生最优聚类中心,实验中分别通过人工数据和标准数据测试验证了该算法的有效性. 相似文献
7.
一种新的最近邻聚类算法 总被引:1,自引:0,他引:1
在分析现有最近邻聚类算法所存在问题的基础上,提出了一种先利用均值规格化的思想来确定算法的初始半径,然后根据启发式规则修改聚类半径的新的最近邻聚类算法.同时,给出了聚类有效性函数对得到的聚类结果进行合理性判断. 相似文献
8.
9.
詹志飞 《重庆文理学院学报(自然科学版)》2009,28(3)
为克服FCM算法对聚类中心初值敏感和易陷入局部搜索等缺点,将选举机制和信息熵引入FCM,仿真实验表明,改善后的算法不仅可以自动选取最合适的聚类数,而且还有效地改善了因FCM初始时随机选择聚类中心导致聚类结果不稳定,易陷入局部极小值的缺点,并提高了FCM算法的收敛速度. 相似文献
10.
王培珍 《安庆师范学院学报(自然科学版)》1999,5(4):8-9,28
模糊C- 均值算法是一种比较有的数据聚类方法,然而在聚类数不能事先确定,或样本空间太大时,聚类非常困难。遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随行、自适应的搜索算法。将遗传算法与模糊聚类技术结合起来,提出一种混合聚类的方案。该方案能够快速正确的实现聚类,且不需事先认定聚类数。实验结果令人满意。 相似文献
11.
免疫进化模糊聚类算法在边缘检测中的应用 总被引:7,自引:0,他引:7
针对图像处理中的模糊边缘检测问题,提出一种免疫进化模糊聚类算法.该算法在传统遗传算法全局随机搜索的基础上,借鉴了生物免疫机制中抗体的多样性保持策略,改善了遗传算法的群体多样性,具有更好的全局搜索能力.实验结果表明,该算法不仅具有很强的模糊边缘和微细边缘检测能力,而且可以减弱基于遗传算法的模糊聚类算法在遗传后期的波动现象. 相似文献
12.
混沌免疫模糊聚类算法在图像边缘检测中的应用 总被引:7,自引:1,他引:7
针对图像处理中的模糊边缘检测问题,提出一种混沌免疫模糊聚类算法.该算法把混沌变量加载于免疫算法的变量群体中,利用混沌搜索的特点对群体进行微小扰动并逐步调整扰动幅度,明显改善了免疫算法的群体多样性.实验结果表明,该算法不仅具有很强的模糊边缘和微细边缘检测能力,而且可以提高基于人工免疫进化算法的模糊聚类算法的搜索效率. 相似文献
13.
模糊核聚类算法已广泛应用于图像分割领域,然而该算法对初始值的选取、噪声以及图像灰度不均匀比较敏感。针对该问题,提出了一种改进的模糊核聚类图像分割算法。将改进的最大类间方差法(Otsu)引入模糊核聚类算法中,结合图像的概率信息和空间信息,得到了一种高效、实用的图像分割方法。实验结果表明,改进算法具有较强的抗噪能力,较高的分割精度,可以用于工程实际。 相似文献
14.
基于模糊c-均值算法和遗传算法的新聚类方法 总被引:1,自引:1,他引:1
为了得到最佳聚类数和相应的每一类中的样本,文中首先介绍了一种新聚类方法,用该方法构造了一个既考虑类与类之间的分散程度、又考虑同一类紧凑程度的目标评价函数;再运用模糊c-均值算法(FCM)进行迭代,求得每一类的中心和隶属度值;然后运用遗传算法搜索全局极值点;最后运用该算法对我国全要素生产力进行了模糊分类. 相似文献
15.
针对传统按相关系数高低进行选股并使用简单的非线性规划进行跟踪误差优化的方法进行改进,以沪深300指数为目标指数,根据动态聚类方法进行选股,基于遗传算法进行优化求解分配最优资金配置权重,在一定约束条件下构建指数投资组合,实现跟踪误差优化目的.实证结果表明,结合动态聚类与遗传算法构建指数投资组合,比传统的相关系数法选股并进行非线性规划求解能得到更小的跟踪误差和更好的目标指数拟合效果,目标指数跟踪拟合效果更为有效. 相似文献
16.
改进遗传算法在模糊文本聚类中的应用研究 总被引:1,自引:0,他引:1
在分析了传统模糊聚类FCM算法和基于遗传聚类算法优点和不足的基础上,提出了一种基于免疫单亲遗传和模糊C均值的改进遗传聚类算法,克服了FCM的局部最优问题以及标准遗传算法聚类时的搜索速度和聚类精度的矛盾,并将该算法用于文本聚类,实验表明该算法是有效的。 相似文献
17.
基于人工免疫粒子群优化算法的动态聚类分析 总被引:1,自引:0,他引:1
模糊C-均值聚类算法受初始化影响较大,在迭代时容易陷入局部极小值。将粒子群优化算法与模糊G-均值聚类算法相结合,提出一种新颖的动态聚类算法。该算法利用人工免疫思想改进粒子群优化过程,在很大程度上避免了粒子群算法和聚类算法早熟现象的发生,全局搜索能力和局部搜索能力优于同类算法。利用聚类理论中的经验规则kmax≤√n确定聚类数k的搜索范围,在最优粒子基础上进化新一级种群,该方案可有效提高算法的收敛速度。两组数据的仿真实验表明,新算法优于传统模糊C-均值聚类算法,具有收敛速度快和解的精度高的特点。 相似文献
18.
一种基于改进型遗传算法的模糊聚类 总被引:4,自引:0,他引:4
针对模糊C均值算法(FCM算法)难以达到全局最优解的问题,引入了具有全局搜索能力的遗传算法以解决聚类问题,并在标准遗传算法基础上进行了改进。将该算法运用于IR IS数据的聚类,实现了较好的聚类,从而验证了算法的有效性。 相似文献