首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
设f1,f2,…,fk是关于图的一些参数.该文运用归纳法给出了一般化的Ramsey数r(f1≥n1,f2≥n2,…,fk≥nk)一个一般的上界估计.同时讨论了混合Ramsey数叭v(f;m;H)在一定条件下的一个上界,并给出了在取特殊参数xF情况下混合Ramsey数的一个准确表达式.  相似文献   

2.
给定图G,Ramsey数R(G)是最小的正整数N,满足对完全图K_N的边任意红蓝着色,则或者存在红色子图G或者存在蓝色子图G.扫帚图B_(k,m)是将星图K_(1,k)的中心点与路Pm的一个端点黏成一个点得到的树图.由此得到,当k为大于1的正整数时,R(B_(k,2k-1))=4k-2且R(B_(k,4))=2k+3.  相似文献   

3.
设G和H是任意的图,Ramsey数r(G,H)定义为最小的正整数r,使得图Kr的任意红蓝二边着色或存在单色的红色子图G,或存在单色的蓝色子图H.临界星图Ramsey数r_*(G,H)为最小的正整数n,使得图Kr-K_(1,)r_(-1-)n的任意红蓝二边着色或存在单色的红色子图G,或存在单色的蓝色子图H.在临界星图启发下,临界完全图Ramsey数rK(G,H)定义为最大的正整数n,使得图Kr-Kn的任意红蓝二边着色或存在单色的红色子图G或存在单色的蓝色子图H.这里r为Ramsey数r(G,H).确定了rK(W_(1,)n,K_3)和rK(Cn,K_3),其中W_(1,)n=K_1+Cn为轮.  相似文献   

4.
对著名的组合数学问题——Ramsey数问题进行了研究,利用Ramsey数的有关性质和归纳法,得到并证明了Ramsey数的一个新上界公式,即N(q_1,q_2,…,q_t;2)≤(q_1+q_2+…+q_t-2t+2)!/[(q_1-1)!(q_2-1)!(q_3-2)!…(q_t-2)!],这个新的上界公式改进了几十年来组合数学和图论方面的专著和教科书中的相应结论,它对计算具体的Ramsey数值很有意义.  相似文献   

5.
本文主要讨论Ramsey数及Schur数,着重讨论如何改进他们的上界,文中应用了初等数论,级数并结合组合论的方法,反复应用整数的奇,偶性及鸽笼原理,从而大大降低了Ramsey数及Schur数上,即对任意顶点个数不小于n(3/2+sh1) 1的完全图的任-n边着色,一定有一个同色三角形。  相似文献   

6.
对于无向有限简单图G和H,边Ramsey数R(C,H)是指最小的整数e,使得对一个有e条边的图的边用红蓝两色进行2-染色后要么得到一个红色的G,要么得到一个蓝色的H.通过分支定界法,得到一些边Ramsey数的上界.  相似文献   

7.
讨论了多色Ramsey数极图的多种可能构形及相应的上界公式.  相似文献   

8.
对于完全图Kn和一个额外的顶点v,通过在v与Kn之间添加k条边所得出的图,记为KnK1,k.设G和H是任意的图,临界星图Ramsey数r*(G,H)定义为最小的正整数k,使得图KN-1K1,k的任意红蓝2-边着色,或者存在单色的红色子图G,或者存在单色的蓝色子图H,这里N指的是Ramsey数r(G,H).文中找到了r(Fn,mK2)的所有临界图,利用这些临界图得到了临界星图Ramsey数r*(Fn,mK2)=m+1,nm≥1,以及r*(Fn,mK2)=2 m,n≤m,这里Fn=K1+nK2是扇形图.  相似文献   

9.
给出对所有的整数n≥s≥3045,br(Ts,Kn,n)≤sn成立;以及对固定的整数t≥2,m≥1,br(Kt,t,Km,n)≤n+cn1-1/t成立,其中c>0是常数.另外,本文得到对正整数,br(Kt,t,Km,n-m),在这种情形下改进了下界r(Kt,t,Km,n-,)/2.  相似文献   

10.
对给定的两个图G和H,Ramsey数R(G,H)是最小的正整数N,使得对完全图KN的边任意红/蓝着色,或者存在红色子图G,或者存在蓝色子图H.用G+H表示两个不交的图G和H之间完全连边所得到的图.设Bm=K2+mK1,Fn=K1+nK2.证明了当m≥1且n≥max{2,3 m-2},R(Bm,Fn)=4n+1;当n≥38,R(F2,K2,n)=2n+3.  相似文献   

11.
研究三角形和K2+Tn的Ramseygoodness性质.在已证明的r(K3,K2+T4)=11基础上利用数学归纳法得出:当n≥4时,有r(K3,K2+Tn)=2n+3.从一个图G中删除两个点,由剩余的点导出的子图记为G’,李雨生先生得出一个关于r(G,H)的结论.作为它的推论,给出了对于“书”(Bm)和K3+L的Ramsey数的一个上界.  相似文献   

12.
对给定的2个图G和H,Ramsey数r(G,H)是最小的正整数r,使得对完全图Kr的边任意红蓝着色或存在红色子图G、或存在蓝色子图H.临界完全图Ramsey数r_K(G,H)是最大的正整数n,使得图K_r-K_n的边任意红蓝着色或存在红色子图G或存在蓝色子图H.当正整数n≥5时,r_K(C_n,K_4)=n/2,C_n为n个点的圈.  相似文献   

13.
给出了10-正则循环(3,11,45)-Ramsey图的一个递阶生成构造.该正则循环图的弦长序列是:1,3,5,12,19.同时证明了拉姆赛数R(4,5) 46.进一步,我们发现了一个有趣的结果,作为(3,11,45)-Ramsey图的一个子图(3,10,38)-Ramsey图,改变(3,10,38)-Ramsey图的4条Ramsey临界边,该图将变为另一个10正则的循环(3,10,38)-Ramsey图.该正则循环图的弦长序列也是:1,3,5,12,19.  相似文献   

14.
本文构造了3个新的素数阶循环图,从而得到了3个Ramsey数的下界:R(4,20)≥212,R(4,21)≥240,R(4,22)≥258.  相似文献   

15.
一个查找二色Ramsey图中可能存在的自由边的算法   总被引:3,自引:3,他引:0  
Kn(s,t)定义为一个正整数n,同时存在一个由二色边构成简单完成图Kn,使得Kn中既不存在单色完全子图Ks和单色子完全子图Kt,在Ramsey图Kn(s,t)中一条自由边定义为,即使单独改变这条边的颜色,所得到的新图仍是一个二色Ramsey图Kn(s,t)。本基于作在献[2]中给出的算法,提出一个新算法,该算法可以找出一个给定Ramsey图Kn(s,t)中的所有可能的自由边,并简要分析了其时间复杂性。对于一个已有的Ramsey图Kn(,s,t),利用该算法可能找出其他Ramsey图Kn(s,t)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号