首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
为了研究硫锡化合物SnSx(x=1,2)纳米片材料的气敏特性,以工艺简单的一步水热法制备SnS(硫化亚锡)及SnS2(二硫化锡)纳米片气敏传感器;对SnSx(x=1,2)纳米片样品进行扫描电镜(SEM)表征发现,SnS纳米片平均厚度在50 nm以下,SnS2纳米片厚度在100 nm以上.气敏性能测试结果显示,SnS基传感器在190℃的工作温度下对50μL·L-1的乙醇响应达到5.32, SnS2纳米片传感器在160℃下对50μL·L-1的三乙胺(TEA)的响应值为4.38,气敏性质差异大的主要原因是片层结构的不同.  相似文献   

2.
为探讨氧化石墨烯复合材料的气敏性能,以氧化石墨、钛酸四丁酯为主要原料,采用水热法制备氧化石墨烯(GO)与Ti O2复合材料并研究其乙醇气体敏感性能。以钛酸四丁酯及氧化石墨烯为原料,在水性体系中合成Ti O2质量分数不同的GO/Ti O2复合材料,进行XRD和SEM表征及气敏性能测试,讨论了温度、Ti O2质量分数、乙醇浓度等因素对敏感性的影响。结果表明:在工作温度为250℃时,GO/Ti O2(Ti O2质量分数为10%)具有乙醇最佳的气敏响应,显示了良好的气体敏感性,可以用于检测乙醇的气体浓度。  相似文献   

3.
以葡萄糖和SnCl4·5H2O溶液为原料,采用水热法制备超小SnO2纳米颗粒.在合成过程中,向溶液中加入不同量的磷酸(PA).利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和比表面积测试仪对SnO2进行表征,研究添加磷酸对气敏性能的影响,并分析其气敏机理.结果表明:最终产物具有超小的颗粒尺寸和较大的比表面积,其中掺杂0.6 mmol磷酸的SnO2所制备的气体传感器气敏性能最好,在最佳工作温度200℃下,灵敏度达7.5,且具有良好的稳定性;其气敏特性的提高归因于超小的颗粒尺寸和较大的比表面积,有利于乙醇气体吸附.  相似文献   

4.
利用气/液界面自组装法和溶液浸渍转移法制备了单层和双层氧化铟多孔有序气敏薄膜,并对其进行了气敏特性测试,同时利用多物理场耦合进行气敏特性仿真研究.结果表明,制备的气敏薄膜具有规则的孔道结构,孔壁呈现为具有大比表面积的片状结构.基于该气敏材料的气体传感器对丁酮表现出优良的气敏特性,单层In2O3多孔有序气体传感器在最佳工作温度350℃的条件下对质量分数为100×10-6的丁酮的灵敏度为15.37,响应时间仅为4.3s;双层In2O3多孔有序气体传感器在最佳工作温度375℃的条件下对质量分数为100×10-6的丁酮的灵敏度为20.45,响应时间为22.7s.仿真结果与气敏特性测试结果吻合较好.  相似文献   

5.
针对纯氧化钨纳米材料丙酮传感器存在灵敏度低、选择性差、检测温度高等问题,通过简单的溶剂热法制备Fe掺杂氧化钨(Fe-W18O49)超细纳米线,优化氧化钨材料对丙酮的敏感性能. 结果表明:Fe(Ⅲ)的掺杂不仅抑制了W18O49晶相向WO3晶相的转化,起到了稳定W18O49晶相的作用,而且优化了其气敏性能. 当掺杂比n(Fe)/n(W)为0.10时,其气敏性能最佳. 该材料在最佳工作温度(220 ℃)下对丙酮(体积分数为5×10-5)的灵敏度达11.4,响应/恢复时间为14/16 s,并且对丙酮有很好的选择性.  相似文献   

6.
采用一步水溶液法在带有银电极的Al_2O_3陶瓷片上合成了ZnO纳米片网络结构.400℃退火30 min后,纳米片变为由纳米颗粒组成的多孔结构,形成ZnO多孔网络结构.利用光还原法成功负载Ag纳米颗粒,合成了Ag/ZnO多孔网络复合结构.利用静态配气法测试ZnO和Ag/ZnO多孔网络结构传感器的气敏性质,两种传感器的最佳工作温度分别为350℃和250℃,对体积分数为50×10~(-6)的乙醇的灵敏度分别为14.0和20.3.结果表明,Ag负载不仅提高了ZnO多孔网络结构传感器的灵敏度,而且降低了传感器的最佳工作温度.  相似文献   

7.
为探讨SnS2纳米片/氧化石墨烯(GO)复合材料的光催化活性,采用液相氧化法制备GO,通过一步水热合成法,控制GO的含量和反应时间制备了一系列SnS2/GO复合材料.采用XRD,DRS,TEM,IR表征了制得的催化剂,研究了催化剂在可见光(λ >420 nm)下降解甲基橙的催化性能.结果表明:改变GO含量,SnS2六边形结构保持不变,SnS2/GO复合材料比纯的SnS2具有更高的光催化活性.当GO与SnS2质量比为5%,反应36 h催化效果较佳.  相似文献   

8.
NanoSnO2酒精传感器的研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶技术分别在0.45、1.3 mol/L SnCl2乙醇溶液和0.9 mol/L SnCl2乙二醇溶液3种体系下合成了纳米SnO2粉体,通过XRD和TEM对其结构进行了表征,并对NanoSnO2传感器进行了气敏特性和研制条件的分析.结果表明制作传感器的最佳烧结温度为660℃,加热电压控制在5 V,使其表面温度达到200~250℃,此时传感器的气敏性能最好,而且在0.45 mol/L SnCl2乙醇溶液用溶胶-凝胶法制得的SnO2纳米酒精传感器的气敏性能最好.  相似文献   

9.
p-n结独特的势垒效应能够显著地改变半导体复合材料的光学和电学性能,同时也能影响气敏元件的灵敏度。通过两步水热法制备出不同质量比的CuO/In2O3复合纳米材料。利用X射线衍射仪、扫描电镜、透射电镜和X射线光电子能谱等方法分析了材料的形貌和结构。观察到CuO为球形分级结构,In2O3纳米颗粒附着在其表面。通过气敏性能测试发现,CuO/In2O3复合纳米材料中CuO与In2O3的质量比为1∶2时,样品在225℃下对体积浓度为100×10-6的正丁醇的灵敏度为107,相对纯In2O3纳米颗粒提升了57%。另外,该样品也对正丁醇表现出很好的选择性和稳定性。  相似文献   

10.
为改进纳米TiO2光催化性能,采用水热法合成气凝胶态氧化石墨烯(graphene oxide, GO)/TiO2复合光催化材料,并进行水热合成条件优化和催化剂结构分析。结果表明:以水为溶剂时,GO与TiO2在120℃反应12 h可获得气凝胶态复合材料,其中,在28 W汞灯照射下GO与TiO2质量比为1∶1的复合催化剂可在80 min内将10 mg/L的甲基橙溶液降解92.8%;在300 W氙灯(≥420 nm)照射下GO与TiO2质量比为4∶3的复合催化剂可在3 h内将10 mg/L的甲基橙溶液降解86%,具有很高的可见光催化活性。研究表明:利用GO与TiO2在一定条件下形成气凝胶态复合多孔材料,能够显著改进纳米TiO2的光催化性能。  相似文献   

11.
以硝酸钴、氯化亚锡和2-甲基咪唑为原料,甲醇为溶剂,通过热解双金属有机骨架法制备SnO2/Co3O4复合材料,探究光活化作用下SnO2/Co3O4复合材料的低温丙酮气敏性能。结果表明:SnO2/Co3O4复合材料在近紫外光活化作用下,工作温度为80℃时,对体积分数为0.005%的丙酮具有良好的气敏性能,灵敏度响应值为14.5,是无光活化时的7倍,并且表现出良好稳定性。SnO2/Co3O4复合材料气敏性能的改善是由于光活化下材料内部建立了氧的光活化吸附-解吸循环,使得低温下材料的气体吸附-解吸过程和表面反应性增强。  相似文献   

12.
本文采用了静电纺丝方法制备了Cd掺杂的In2O3复合纳米纤维,通过X射线衍射(XRD)和扫描电镜(SEM)对纳米纤维材料进行了相关表征.研究了纯In2O3和另外两种不同Cd掺杂的In2O3纳米纤维材料制作的三种气敏元件对室内甲醛气体的气敏特性.结果表明在以摩尔比为1∶1复合时,用静电纺丝方法分别制备出In2O3和CdO纳米纤维后再按1∶1掺杂制作的气敏元件工作温度较低为280℃,在10 ppm时其响应可达13,响应/恢复时间为34 s/35 s;并且具有良好的选择性.  相似文献   

13.
随着市场对有机挥发性气体检测技术要求的日益提高,金属半导体气敏传感器由于其工作温度较低、循环稳定性好、响应和恢复时间短等特点而受到广泛关注.三氧化钨(WO3)作为一种典型的n型金属半导体气敏材料,由于其特殊的气敏特性而在探测各类有毒有害物质的领域中受到了人们普遍重视.传感材料的结构和形貌、暴露晶面、金属氧化物和贵金属离子的引入,对改善材料的气敏性能起着关键性的作用.文章介绍了WO3气敏传感器材料对各种气体的应用,提出基于WO3的气敏传感器研究过程中所面临的难题,并对其未来发展方向进行了展望.  相似文献   

14.
采用简易的一步水热法优化合成出不同Pt浓度掺杂的钙钛矿型ZnSnO3纳米立方体(ZSNCs),并利用XRD、SEM、TEM、EDS和XPS等表征手段对所制备材料的晶体结构、微观形貌、表面特性等进行了详细的分析表征。研究发现,所制备的Pt掺杂ZSNCs纳米立方体形貌均一,边长约为 400 nm,引入的Pt以PtO和PtO2的形式均匀负载在ZSNCs纳米立方体的表面上。以所获Pt掺杂ZSNCs纳米立方体为敏感材料制备出气敏元件,并详细研究了其气敏特性。结果表明,Pt掺杂可有效提升ZSNCs纳米立方体对NO2的敏感能力,当Pt掺杂浓度为1%(Pt/Zn摩尔比)时,ZSNCs纳米立方体对NO2具有最佳的气敏特性。在125℃的最佳工作温度下,1% Pt掺杂ZSNCs纳米立方体对500 ppb NO2的灵敏度为16,是未掺杂ZSNCs纳米立方体的11倍,且检测下限低于50 ppb,同时气敏元件也具有优异的稳定性和NO2选择性。结合结构表征和气敏特性测试结果,综合电子敏化和化学敏化效应阐述了Pt掺杂对ZnSnO3纳米立方体NO2敏感性能的增强机理,并建立了气敏反应模型。  相似文献   

15.
采用射频反应磁控溅射锡(Sn)靶和钨(W)靶的方法制备了SnO2/WO3/MWCNT复合薄膜材料和相应的气敏传感器,通过FSEM、XRD和XPS等方法分析了复合薄膜材料的横断面表面形貌、物相结构及表面化学组成,测试了该气敏传感器的灵敏度、选择性和响应恢复等气体敏感性能.实验结果表明:该复合薄膜气敏传感器具有较好的气敏性能,对NO2有较好的灵敏度,对其他干扰气体不敏感;SnO2/WO3/MWCNT薄膜中,W、Sn、C主要以W+6、Sn+4和C的形式存在.文中还对气敏响应机理进行了初步的分析与讨论.  相似文献   

16.
为了提升p型半导体金属氧化物Co3O4的气敏特性,采用两步法将金属有机骨架衍生的十二面体中空Co3O4颗粒与二维石墨相氮化碳(g-C3N4)复合制备异质结g-C3N4/Co3O4复合材料,用于丙酮气体的检测。通过探究该复合物材料的微观结构组成与气敏特性间的构效关系,揭示其气敏机制。结果表明,当g-C3N4负载量为0.04 g时获得的g-C3N4/Co3O4在操作温度为200℃时,对50 mg/L丙酮气体的响应值为140。该复合物对丙酮的检测限为0.7 mg/L,并表现出良好的稳定性和选择性。g-C3N4/Co3O4复合材料气敏性能的改善源于复合材料比表面...  相似文献   

17.
为了阐明In的掺杂能提高SnO2(110)表面气敏性能的反应机制,采用密度泛函理论研究了NO2分子在In掺杂SnO2(110)表面的吸附行为. 计算结果表明:In的掺杂可以提高材料表面的导电性,形成具有氧空位的缺陷表面,有利于发生活性氧在表面的预吸附过程. 掺杂的In5c/SnO2(110)表面对NO2表现出良好的吸附性,对NO2气体的选择性和灵敏度提高的主要原因是In掺杂后氧空位缺陷表面的形成. 此外,活性氧物种的预吸附对材料表面气敏性能的影响取决于NO2在材料表面的具体吸附位点,其中Sn5c位点的吸附促使电荷从表面转移到气体分子,导致表面电阻的增大以及氧空位的产生,从而表现出优异的气敏吸附性能.  相似文献   

18.
用MgO掺杂SnO2材料(SnO2/MgO)研制了旁热式甲醛传感器,采用紫外光激发的方式使传感器能在室温下工作.利用X射线衍射仪、热场发射扫描电镜、比表面积与孔隙率分析仪对SnO2和SnO2/MgO材料进行了物相组成、微观形貌的表征和比表面积的测定,并在不同退火温度、不同紫外光照射强度下对传感器进行了性能测试.结果表明:掺杂后的材料比表面积更大、吸附能力更强,当退火温度为650 ℃、紫外光照射强度为1.75 mW/cm2时SnO2/MgO传感器的灵敏度最好.在以相同体积分数的O2、C2H6O作为干扰气体时,SnO2/MgO气敏传感器对甲醛具有良好的选择性.研究结果为探索高灵敏的甲醛检测新技术提供了参考.  相似文献   

19.
用SBA-15硬模板复制技术在不同温度下制备具有纳米线阵列结构的In2O3系列样品.利用X射线衍射仪、场扫描电子显微镜和紫外可见光光度计对样品的晶体结构、晶粒尺寸、晶胞参数、形貌及带隙宽度等进行表征,并测试分析样品对乙醇气体的气敏性能.结果表明:样品均为球形纳米In2O3晶粒有序排列生长组成的三维纳米线阵列结构;随着烧结温度的增加,样品的晶粒尺寸和纳米线直径增大,纳米线间距减小;当烧结温度为450~650℃时,样品的晶胞参数和带隙宽度随烧结温度的增加分别呈增大和减小趋势;当乙醇气体质量浓度为1×10-4 mg/L,测试温度为320℃时,450℃烧结In2O3样品的灵敏度最大为50.59.  相似文献   

20.
为了提高NO2传感器的敏感性能,采用自分相法制备La0.8Sr0.2Co0.2Fe0.8O3-δ(LSCF)和LSCF+0.050Ag, LSCF+0.075Ag, LSCF+0.100Ag双相敏感电极,并以YSZ为固体电解质,制备阻抗谱型NO2传感器,研究Ag的掺杂量对传感器性能的影响。结果表明,与Z′,Z″,|Z|相比,θ作为响应信号时传感器的响应恢复时间更短、响应信号更稳定;以θ为响应信号,基于LSCF,LSCF+0.050Ag, LSCF+0.075Ag和LSCF+0.100Ag敏感电极的传感器在450℃最佳工作温度下的灵敏度分别为11.12°,11.28°,13.62°和9.56°/10,其中LSCF+0.075Ag表现出更高的灵敏度,表现出优异的重现性和长期稳定性;此外,传感器对CH4,CO2,H2,CO和NH3表现出优异的抗干扰性能。...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号