首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The spontaneously hypertensive rat (SHR) is an important animal model of human essential hypertension. During the first month of life, increased retention of sodium is present in the SHR which appears to be mediated by the renin-angiotensin system. The present review will discuss the role that increased activity of the renin-angiotensin system plays in sodium/body fluid regulation during early development. It is hypothesized that disordered regulation of sodium/body fluid homeostasis during this stage leads to pathological cardiovascular regulation in adulthood. Through an understanding of the relationship between sodium/body fluid balance in the young and cardiovascular function in the adult insights may be gained into both the pathological state of hypertension and the critical role played by early development in shaping homeostatic mechanisms in adulthood.  相似文献   

2.
R F Kirby  A K Johnson 《Experientia》1992,48(4):345-351
The spontaneously hypertensive rat (SHR) is an important animal model of human essential hypertension. During the first month of life, increased retention of sodium is present in the SHR which appears to be mediated by the renin-angiotensin system. The present review will discuss the role that increased activity of the renin-angiotensin system plays in sodium/body fluid regulation during early development. It is hypothesized that disordered regulation of sodium/body fluid homeostasis during this stage leads to pathological cardiovascular regulation in adulthood. Through an understanding of the relationship between sodium/body fluid balance in the young and cardiovascular function in the adult insights may be gained into both the pathological state of hypertension and the critical role played by early development in shaping homeostatic mechanisms in adulthood.  相似文献   

3.
4.
Cholesterol is a multifaceted molecule. First, it serves as an essential membrane component, as a cofactor for signaling molecules and as a precursor for steroid hormones; second, its synthesis, intercellular transport and intracellular distribution present a logistic tour de force requiring hundreds of cellular components, and third, it plays a crucial role in major human diseases. Despite intense research on this molecule, its metabolism in the central nervous system and its role in neuronal development and function are not well understood. Here I summarize recent results and hypotheses about how neurons maintain their cholesterol level and how cholesterol influences the establishment and maintenance of synaptic connections.  相似文献   

5.
6.
7.
The great interest that scientists have for adiponectin is primarily due to its central metabolic role. Indeed, the major function of this adipokine is the control of glucose homeostasis that it exerts regulating liver and muscle metabolism. Adiponectin has insulin-sensitizing action and leads to down-regulation of hepatic gluconeogenesis and an increase of fatty acid oxidation. In addition, adiponectin is reported to play an important role in the inhibition of inflammation. The hormone is secreted in full-length form, which can either assemble into complexes or be converted into globular form by proteolytic cleavage. Over the past few years, emerging publications reveal a more varied and pleiotropic action of this hormone. Many studies emphasize a key role of adiponectin during tissue regeneration and show that adiponectin deficiency greatly inhibits the mechanisms underlying tissue renewal. This review deals with the role of adiponectin in tissue regeneration, mainly referring to skeletal muscle regeneration, a process in which adiponectin is deeply involved. In this tissue, globular adiponectin increases proliferation, migration and myogenic properties of both resident stem cells (namely satellite cells) and non-resident muscle precursors (namely mesoangioblasts). Furthermore, skeletal muscle could be a site for the local production of the globular form that occurs in an inflamed environment. Overall, these recent findings contribute to highlight an intriguing function of adiponectin in addition to its well-recognized metabolic action.  相似文献   

8.
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.  相似文献   

9.
Summary Uncontrollable alcohol ingestive behavior has been linked to deficits of central neurotransmission. The pineal gland plays an important role in modulating ethanol intake in numerous animal species. The opioidergic (i.e. -endorphin, enkephalin, and dynorphin) system is involved in both the actions of alcohol and opiates, as well as craving and/or genetic predisposition towards abuse of these two agents. Furthermore, there is significant evidence to link ingestive behaviors with the ventral tegmental accumbens-hypothalamic axis, whereby the biogenic amines dopamine and serotonin are reciprocally involved. Evidence is presented which implicates the striatum and the hypothalamus as possible specific loci for regional differences between alcohol-preferring and alcohol-nonpreferring mice. We believe that photoperiod-induced alcohol ingestive behavior may involve alterations in both pineal and hypothalamic opioid peptides.  相似文献   

10.
Ethanol ingestive behavior as a function of central neurotransmission   总被引:2,自引:0,他引:2  
Uncontrollable alcohol ingestive behavior has been linked to deficits of central neurotransmission. The pineal gland plays an important role in modulating ethanol intake in numerous animal species. The opioidergic (i.e. beta-endorphin, enkephalin, and dynorphin) system is involved in both the actions of alcohol and opiates, as well as craving and/or genetic predisposition towards abuse of these two agents. Furthermore, there is significant evidence to link ingestive behaviors with the ventral tegmental accumbens-hypothalamic axis, whereby the biogenic amines dopamine and serotonin are reciprocally involved. Evidence is presented which implicates the striatum and the hypothalamus as possible specific loci for regional differences between alcohol-preferring and alcohol-nonpreferring mice. We believe that photoperiod-induced alcohol ingestive behavior may involve alterations in both pineal and hypothalamic opioid peptides.  相似文献   

11.
Summary Insects and spiders which are active at subzero temperatures on snow in winter are found to be protected against internal freezing by antifreeze agents present in their body fluid. The body fluid has a melting point of about –1 °C, but the antifreeze agents prevent growth of ice crystals at temperatures down to –6 to –7 °C.Acknowledgment. We would like to thank Anne Lohrman for her kind help in collecting insects and spiders.  相似文献   

12.
Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1β. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1β or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing “neutrophil extracellular traps”, which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.  相似文献   

13.
We studied time-dependent metabolism of (10R)-[3H] juvenile hormone (JH) III and (10R, 11S)-[3H]JH I injected intoManduca sexta larvae; the hormones are metabolized to polar metabolites, expecially the JH acid-diol, and an unknown. Products were analyzed using a reversed-phase liquid chromatography assay. (10R)-JH III is metabolized much more rapidly than (10R, 11S)-[3H]JH I, whether injected seperately or as a mixture of hormones. The unknown metabolites of JH I and JH III were identified as phosphate conjugates of JH I and JH III diol by tandem mass spectral analysis of isolated samples. The phosphate conjugate of JH I diol is the principle end product of JH I metabolism.  相似文献   

14.
15.
Zusammenfassung Es wird gezeigt, dass Serum normaler Ratten einen Hemmstoff hohern Molekulargewichts enthält, der das Wachstum embryonaler Leberzellen der Ratte in vitro verlangsamt.  相似文献   

16.
17.
18.
19.
Summary Considerably higher thyroxine and triiodothyronine concentrations in sera of bovine fetuses than in maternal samples were found during the last trimester of pregnancy.Acknowledgment. We wish to thank Miss.R. Fajkoová for skilled technical assistance.  相似文献   

20.
Receptor for AGE (RAGE) is a member of the immunoglobulin superfamily that engages distinct classes of ligands. The biology of RAGE is driven by the settings in which these ligands accumulate, such as diabetes, inflammation, neurodegenerative disorders and tumors. In this review, we discuss the context of each of these classes of ligands, including advance glycation end-products, amyloid beta peptide and the family of beta sheet fibrils, S100/calgranulins and amphoterin. Implications for the role of these ligands interacting with RAGE in homeostasis and disease will be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号