首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptide hormone relaxin is emerging as a multi-functional factor in a broad range of target tissues including several non-reproductive organs, in addition to its historical role as a hormone of pregnancy. This review discusses the evidence that collectively demonstrates the many diverse and vital roles of relaxin: the homeostatic role of endogenous relaxin in mammalian pregnancy and ageing; its gender-related effects; the therapeutic effects of relaxin in the treatment of fibrosis, inflammation, cardioprotection, vasodilation and wound healing (angiogenesis) amongst other pathophysiological conditions, and its potential mechanism of action. Furthermore, translational issues using experimental models (to humans) and its use in various clinical trials, are described, each with important lessons for the design of future trials involving relaxin. The diverse physiological and pathological roles for relaxin have led to the search for its significance in humans and highlight its potential as a drug of the future. Received 12 December 2006; received after revision 12 February 2007; accepted 15 March 2007  相似文献   

2.
Since its discovery in the 1920s, relaxin has enjoyed a reputation as a peptide hormone of pregnancy. However, relaxin and other relaxin family peptides are now associated with numerous non-reproductive physiologies and disease states. The new millennium bought with it the sequence of the human genome and subsequently new directions for relaxin research. In 2002, the ancestral relaxin gene RLN3 was identified from genome databases. The relaxin-3 peptide is highly expressed in a small region of the brain and in species from teleost to primates and has both conserved sequence and sites of expression. Combined with the discovery of the relaxin family peptide receptors, interest in the role of the relaxin family peptides in the central nervous system has been reignited. This review explores the relaxin family peptides that are expressed in or act upon the brain, the receptors that mediate their actions, and what is currently known of their functions.  相似文献   

3.
A C-terminally elongated form of peptide histidine isoleucine amide (PHI) was isolated from porcine intestine based on its effect on cAMP production in IMR-32 cells. The structure was determined by amino acid sequence analysis of tryptic fragments and by mass spectrometry. The peptide has 42 amino acid residues like those described from human, rat and mouse, but the amino acid sequence of the C-terminal extension of pig PHI is unique. Unlike the other peptides, it has a C-terminal Ala and it differs at five positions from the human form and at six positions from the rat form, while the human and the rat forms differ by only two substitutions. To avoid confusion arising from different C-terminal residues, a unifying nomenclature is proposed: PHI-27 for the hormone and PHI-42 for the elongated product.  相似文献   

4.
Cancers of the stomach, colon and exocrine pancreas are major international health problems and result in more than a million deaths worldwide each year. The therapies for these malignancies must be improved. The effects of gastrointestinal (GI) hormonal peptides and endogenous growth factors on these cancers were reviewed. Some GI peptides, including gastrin and gastrin-releasing peptide (GRP) (mammalian bombesin), appear to be involved in the growth of neoplasms of the GI tract. Certain growth factors such as insulin-like growth factor (IGF)-I, IGF-II and epidermal growth factor and their receptors that regulate cell proliferation are also implicated in the development and progression of GI cancers. Experimental investigations on gastric, colorectal and pancreatic cancers with analogs of somatostatin, antagonists of bombesin/GRP, antagonists of growth hormone-releasing hormone as well as cytotoxic peptides that can be targeted to peptide receptors on tumors were summarized. Clinical trials on peptide analogs in patients with gastric, colorectal and pancreatic cancers were reviewed and analyzed. It may be possible to develop new approaches to hormonal therapy of GI malignancies based on various peptide analogs.Received 20 November 2003; accepted 6 January 2004  相似文献   

5.
Human alpha-atrial natriuretic peptide (h-alpha ANP) makes the urine of dehydrated volunteers hypotonic to plasma despite high circulating concentrations of antidiuretic hormone. Urinary dilution with h-alpha ANP also occurs in subjects receiving indomethacin. Therefore, h-alpha ANP antagonises effects of antidiuretic hormone on distal tubular V2-receptors in man, probably without involving prostaglandins.  相似文献   

6.
GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn2+ has been shown to be a potent stimulator of GPR39 activity via the Gαq, Gα12/13 and Gαs pathways. The potency and specificity of Zn2+ in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn2+ signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.  相似文献   

7.
Tannins occur naturally in relatively abundant amounts in fruits, herbal medicines and common beverages. Thus an understanding of how these polyphenols affect peptide hormone action is of importance. We report here that tannic acid (a hydrolysable tannin) inhibits insulin-stimulated lipogenesis in rat adipose tissue in vitro, with an IC50 estimated to be about 350 M. However, its monomer, gallic acid, did not show a similar inhibitory effect at concentrations up to 1 mM. The inhibition by tannic acid was less evident with higher concentrations of bovine serum albumin in the incubation buffer. This was attributed to the formation of a tannin-protein complex between bovine serum albumin and tannic acid. In a binding assay, it was observed that the specific binding of insulin to its receptor was not inhibited by tannic acid in the concentration range 0–200 M. However, insulin-stimulated autophosphorylation of the insulin receptor, and receptor-associated tyrosine kinase phosphorylation of RR-SRC peptide, were inhibited by tannic acid at concentrations as low as 25 M. Our data do not support the current speculation that tannins affect the activity of peptide hormones by binding to them. Therefore, our finding opens up a new perspective in the understanding of the mode of action of tannins on such hormones.  相似文献   

8.
Peptides in the mammalian cardiovascular system   总被引:2,自引:0,他引:2  
Summary Ample immunocytochemical evidence is now available demonstrating that several peptides are present in the mammalian cardiovascular system where they are localised to nerve fibres and myocardial cells. The neuropeptides (neuropeptide Y, calcitonin gene-related peptide, tachykinins and vasoctive intestinal polypeptide) are localised to large secretory vesicles in subpopulations of afferent or efferent nerves supplying the heart and vasculature of several mammals, including man. Although they often exert potent pharmacological effects on the tissues in which they occur their physiological significance has still to be established. They may act directly via specific receptors and/or indirectly by influencing the release and action of other cardiovascular transmitters. In marked contrast, atrial natriuretic peptide is produced by cardiac myocytes and considered to act as a circulating hormone.  相似文献   

9.
Peptides in the mammalian cardiovascular system   总被引:4,自引:0,他引:4  
Ample immunocytochemical evidence is now available demonstrating that several peptides are present in the mammalian cardiovascular system where they are localised to nerve fibres and myocardial cells. The neuropeptides (neuropeptide Y, calcitonin gene-related peptide, tachykinins and vasoactive intestinal polypeptide) are localised to large secretory vesicles in subpopulations of afferent or efferent nerves supplying the heart and vasculature of several mammals, including man. Although they often exert potent pharmacological effects on the tissues in which they occur their physiological significance has still to be established. They may act directly via specific receptors and/or indirectly by influencing the release and action of other cardiovascular transmitters. In marked contrast, atrial natriuretic peptide is produced by cardiac myocytes and considered to act as a circulating hormone.  相似文献   

10.
T Noda  K Morita  T Uzawa  H Kinoshita  M Hori 《Experientia》1987,43(8):890-892
The analog of h-CGRP, des-Ala-deamino-dicarba-h-CGRP, was synthesized by the combination of the conventional solution and the solid phase peptide synthesis methods. This analog showed stronger and longer-lasting hypocalcemic and hypophosphatemic activities than the natural hormone.  相似文献   

11.
Summary The analog of h-CGRP, des-Ala-deamino-dicarba-h-CGRP, was synthesized by the combination of the conventional solution and the solid phase peptide synthesis methods. This analog showed stronger and longer-lasting hypocalcemic and hypophosphatemic activities than the natural hormone.30 September 1986  相似文献   

12.
Over the years, investigators have noticed, in a wide variety of species of vertebrates, large numbers of cells migrating from the olfactory placode to the forebrain. These cells were considered to be Schwann cells or ganglion cells of the terminalis nerve. Recently, immunocytochemical localization studies have shown that many of these migrating cells contain luteinizing hormone-releasing hormone (LHRH), a brain peptide that regulates reproductive functions by evoking the release of luteinizing hormone and follicle-stimulating hormone from the anterior pituitary gland. The origin of LHRH cells in the epithelium of the medial olfactory placode, their migration across the nasal septum and into the forebrain, with branches of the terminalis nerve, also a derivative of the medial part of the olfactory placode, has led to some interesting speculations, from evolutionary and physiological perspectives, about the origin of these cells and the role of the terminalis nerve in their migration.  相似文献   

13.
The LIM domain only 4 (LMO4) protein is expressed in the hypothalamus, but its function there is not known. Using mice with LMO4 ablated in postnatal glutamatergic neurons, including most neurons of the paraventricular (PVN) and ventromedial (VMH) hypothalamic nuclei where LMO4 is expressed, we asked whether LMO4 is required for metabolic homeostasis. LMO4 mutant mice exhibited early onset adiposity. These mice had reduced energy expenditure and impaired thermogenesis together with reduced sympathetic outflow to adipose tissues. The peptide hormone leptin, produced from adipocytes, activates Jak/Stat3 signaling at the hypothalamus to control food intake, energy expenditure, and fat metabolism. Intracerebroventricular infusion of leptin suppressed feeding similarly in LMO4 mutant and control mice. However, leptin-induced fat loss was impaired and activation of Stat3 in the VMH was blunted in these mice. Thus, our study identifies LMO4 as a novel modulator of leptin function in selective hypothalamic nuclei to regulate fat metabolism.  相似文献   

14.
Glucagon is a pancreatic peptide hormone that, as a counterregulatory hormone for insulin, stimulates glucose release by the liver and maintains glucose homeostasis. First described as a glucagon binding entity functionally linked to adenylyl cyclase, the glucagon receptor is a member of the family B receptors within the G protein coupled superfamily of seven transmembrane-spanning receptors. During the past decade, considerable progress has been made in the identification of the molecular determinants of the glucagon receptor that are important for ligand binding and signal transduction, in the development of glucagon analogs and of nonpeptide small molecules acting as receptor antagonists, and in the characterization of the mechanisms involved in the regulation of expression of the glucagon receptor gene. In the present review, the current knowledge of glucagon receptor structure, function and expression is described, with emphasis on the metabolic fate of glucagon and on the endocytosis and cell itinerary of both ligand and receptor.  相似文献   

15.
Mammalian oocytes grow and undergo meiosis within ovarian follicles. Fully grown oocytes are arrested at the first meiotic prophase by a mural granulosa origin “arrester” until a surge of luteinizing hormone (LH) from the pituitary at the mid-cycle stimulates the immature oocyte to resume meiosis. Recent evidence indicates that natriuretic peptide precursor type C (NPPC) produced by mural granulosa cells stimulates the generation of cyclic guanosine 3′,5′-monophosphate (cGMP) by cumulus cell natriuretic peptide receptor 2 (NPR2), which diffuses into oocyte via gap junctions and inhibits oocyte phosphodiesterase 3A (PDE3A) activity and cyclic adenosine 3′,5′-monophosphate (cAMP) hydrolysis and maintains meiotic arrest with a high intraoocyte cAMP level. This cAMP is generated through the activity of the Gs G-protein by the G-protein-coupled receptor, GPR3 and GPR12, and adenylyl cyclases (ADCY) endogenous to the oocyte. Further studies suggest that endocrine hormones, such as follicle-stimulating hormone (FSH), LH, 17β-estradiol (E2) and oocyte-derived paracrine factors (ODPFs), participate in oocyte meiosis possibly by the regulation of NPPC and/or NPR2. A detailed investigation of NPPC and NPR2 expression in follicle cells will elucidate the precise molecular mechanisms of gonadotropins, and control the arrest as well as resumption of meiosis.  相似文献   

16.
Endocrine cells producing regulatory peptides   总被引:1,自引:0,他引:1  
Recent data on the immunolocalization of regulatory peptides and related propeptide sequences in endocrine cells and tumors of the gastrointestinal tract, pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptides are the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, alpha-MSH and CLIP (corticotropin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenaline-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.  相似文献   

17.
The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems—PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine—to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as GS that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.  相似文献   

18.
The intra-cardiac nervous system of the decapod heart is composed of large and small ganglionic cells (LGCs and SGCs) and axons of extrinsic cardio-acceleratory and-inhibitory neurons (CAs and CIs). Candidate neurotransmitters for the neurons have been determined by pharmacological, cytochemical and immunocytochemical tests. SGCs may be cholinergic, LGCs and CAs are probably dopaminergic, and CIs are GABAergic. Serotonin and octopamine were cardio-excitatory neuromodulators of the heart. Proctolin, crustacean cardio-active peptide (CCAP), red pigment concentrating hormone (RPCH), and FMRFamide also had modulatory actions on the heart. Proctolin was the most potent peptide, which acted primary on the cardiac ganglion. Insect adipokinetic hormones had little effect on the heart.  相似文献   

19.
Summary Over the years, investigators have noticed, in a wide variety of species of vertebrates, large numbers of cells migrating from the olfactory placode to the forebrain. These cells were considered to be Schwann cells or ganglion cells of the terminalis nerve. Recently, immunocytochemical localization studies have shown that many of these migrating cells contain luteinizing hormone-releasing hormone (LHRH), a brain peptide that regulates reproductive functions by evoking the release of luteinizing hormone and follicle-stimulating hormone from the anterior pituitary gland. The origin of LHRH cells in the epithelium of the medial olfactory placode, their migration across the nasal septum and into the forebrain, with branches of the terminalis nerve, also a derivative of the medial part of the olfactory placode, has led to some interesting speculations, from evolutionary and physiological perspectives, about the origin of these cells and the role of the terminalis nerve in their migration.  相似文献   

20.
Summary The growth hormone (GH) and prolactin releasing (PRL) activity of [D-Met2, Pro5]-enkephalinamide (EKNH2), an opioid peptide analog with higher opiate agonist activity that morphine, was compared in the unanesthetized male rat to those of equimolar doses of morphine upon systemic injection. EKNH2 proved to be a higher PRL, but not GH, releaser than the opiate alkaloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号