共查询到20条相似文献,搜索用时 15 毫秒
1.
利用稳定性理论和中心流形定理等方法研究双时滞磁通神经元模型的稳定性、 Hopf分岔的存在性以及分岔方向和分岔周期解
的稳定性, 并给出部分数值模拟验证所得结论. 结果表明: 在特定时滞范围内模型存在分岔周期解; 时滞的增加可诱导尖峰放电行为. 相似文献
2.
利用稳定性理论和中心流形定理等方法研究双时滞磁通神经元模型的稳定性、 Hopf分岔的存在性以及分岔方向和分岔周期解
的稳定性, 并给出部分数值模拟验证所得结论. 结果表明: 在特定时滞范围内模型存在分岔周期解; 时滞的增加可诱导尖峰放电行为. 相似文献
3.
提出了一个含时滞的磁通Ghostburster神经元模型,研究时滞对该神经元系统动力学行为的影响.利用Routh-Hurwitz判据和稳定性理论讨论了该系统平衡点处局部稳定性与Hopf分岔发生的条件;并通过中心流形定理和范式理论分析了Hopf分岔的方向与周期解的稳定性.数值模拟出该系统在不同时滞作用下的时间序列图、峰峰间期分岔图和双参分岔图.仿真结果表明:在不同时滞作用下,该模型的放电行为发生了延迟现象,并通过加周期分岔放电模式呈现出尖峰放电态和周期簇放电态.研究结果有助于解释延迟效应对电磁辐射作用下神经元系统产生的影响. 相似文献
4.
考虑一类弱电鱼椎体的神经元细胞Ghostburster系统模型, 首先用数值计算方法给出该神经元系统的平衡点, 通过分析平衡点附近Jacobi矩阵对应的特征值, 分析平衡点附近的稳定性及其类型. 其次, 用Hopf分岔存在性理论及其分析方法给出该系统模型Hopf分岔的方向及分岔周期近似解和近似周期. 结果表明, 当系统参数控制在一定范围内时, 系统模型产生了亚临界Hopf分岔, 并出现周期逐渐增加且不稳定的周期解轨道. 最后, 利用MATLAB等数学软件给出理论分析对应的数值模拟结果, 模拟选取树突膜钾离子电流最大电导和胞体膜注入电流的相关参数作为分岔参数, 考察系统在单参变化下的动力学行为. 相似文献
5.
神经元的放电模式与平衡点的分布及其它的分岔分析有关,本文通过引入磁通量来研究e-HR神经元模型的放电活动。在数值仿真与理论分析相结合的方法下,分析了在外界刺激电流的变化下神经元模型的平衡点分布与它的稳定性分析及其它的分岔分析。通过理论分析可知该系统存在亚临界Hopf分岔,并且在Hopf分岔点的附件发现了隐藏的极限环吸引子。运用Washout控制器使亚临界Hopf分岔转化为超临界Hopf分岔,从而使系统分岔点附近的拓扑结构发生转变,由此达到消除膜电压隐藏放电的目的。 相似文献
6.
提出一个含磁控忆阻器的时滞磁通神经元模型,研究时滞和外部刺激电流对该模型动力学行为的影响.利用Routh-Hurwitz判据讨论该模型在平衡点处的稳定性,并利用中心流形定理进一步研究该模型在临界点处Hopf分岔的稳定性.通过数值模拟,得到在不同时滞下该模型的时间序列图及单双参分岔图.当改变时滞和外部强迫电流时,发现该模... 相似文献
7.
用非线性动态系统的观点看待神经元的静息和周期放电现象.通过对神经元简化数学模型的理论分析,将神经元的静息态对应模型的稳定平衡态.神经元的神经可激活性对应模型参数处于分岔点附近,神经元的周期放电态对应模型在第1次Hopf分岔之后出现的极限环稳态,用模型的二次Hopf分岔后极限环消失及稳定的不动点重新出现说明神经过程中发生的过强抑制现象. 相似文献
8.
研究了恒电流刺激下神经元Chay模型的Hopf分岔.首先,利用Matlab软件计算出系统在给定参数下的平衡点,据其Jacobian矩阵得到平衡点的稳定性.其次,根据稳定性理论,研究了恒电流刺激下神经元Chay模型,结果表明随着控制参数I的变化,系统将发生Hopf分岔.最后利用Matlab给出了支持理论分析的数值模拟. 相似文献
9.
神经系统由大量神经元组成,改进后的磁通神经元模型用来描述考虑电磁感应的神经元电活动的动力学行为.通过改变参数或选取适当的外加刺激电流以及电磁辐射下,检测到神经元电活动的多种放电模式.此外,对引入磁通量的神经元模型进行了动力学分析,如Hopf分岔分析;通过相图和分岔图讨论了神经元的放电行为.结果表明,该模型可呈现多种放电模式(静息态、尖锋放电、簇放电)以及不同模式之间的转换. 相似文献
10.
在一个时滞模型的基础上,研究了2个不同时滞的HIV病毒的CD4+细胞模型及它平衡点的稳定性问题,并研究了Hopf分岔的存在性。 相似文献
11.
高彩琳 《太原师范学院学报(自然科学版)》2011,10(2):11-17
研究了一类带有时滞且具有预防接种免疫力的SIR传染病模型.借助特征值理论分析了无病平衡点和地方病平衡点的稳定性,同时以时滞为分岔参数,得出Hopf分岔的条件,进一步应用规范型和中心流形定理得出了关于Hopf分岔周期解的稳定性和分岔方向的计算公式. 相似文献
12.
高维机电耦合系统Hopf分岔的识别 总被引:2,自引:0,他引:2
基于Hurwitz代数识别原理,运用半解析半数值的判别方法,分析大型汽轮发电机组转子轴系与电网耦合次同步谐振(SSR)非线性模型,确定出该系统在给定条件下的Hopf分岔点,计算结果与QR方法的结果进行了比较,证明了该方法的正确与有效. 相似文献
13.
王在华 《科技导报(北京)》2009,27(2)
简要综述了迭代法在时滞系统稳定性与Hopf分岔研究中的若干新进展.在稳定性分析中,利用Lambert W函数,时滞系统的最大实部特征根可以用Newton-Raphson等迭代法求得.而在Hopf分岔分析中.利用迭代法求得了分岔周期解的近似表达式.对这两个问题,迭代法简便有效. 相似文献
14.
陈红兵 《中山大学学报(自然科学版)》2013,52(1):45-50
首先建立了一类具有时滞的互惠模型,该模型具有HollingⅡ功能。接着研究了该模型的稳定性,及Hopf分岔和分岔周期解的稳定性。最后举例论证。 相似文献
15.
电磁场对神经元的放电活动有着重要影响,但是目前还无法精确给出电磁场对神经元放电活动影响的具体关系式。本文运用理论与仿真相结合的方法,分析了在外界刺激电流的变化下系统平衡点的分布与稳定性,理论分析得出该系统存在超(亚)临界Hopf分岔行为,并在亚临界Hopf分岔点附近发现了隐藏吸引子。基于理论分析,数值仿真该系统在Hopf分岔点附近的放电特征,揭示了电磁场下HR神经元模型放电特征转变的内在机制。 相似文献
16.
建立了一类人口动态变化的SEIS模型,运用Hurwitz判据得到了平衡点的渐近稳定条件,证明了所建系统产生Hopf分岔、极限环和混沌。 相似文献
17.
研究了一种脑皮层功能柱的集中参数模型,分析了平衡点的稳定性,并给出了其Hopf分岔条件.数值仿真显示,该模型在不同参数条件下可以表现为多种不同的脑电波信号.通过改变外部输入脉冲密度,模型状态响应经历了稳定平衡点和极限环的过程,验证了其Hopf分岔的存在条件.对Hopf分岔的研究为进一步深入了解大脑的非线性结构提供了理论依据. 相似文献
18.
首先, 采用特征根法分析参数与时滞相关延迟振子的稳定性, 并给出稳定性切换准则; 其次, 应用中心流形和规范型理论分析系统分岔周期解的稳定性和周期性. 相似文献
19.
本文主要研究Brusselator系统的动力行为.首先,分析了系统产生Hopf分岔的原因,然后详细讨论了Brusselator系统平衡点的稳定性,并且证明了Brusselator系统当临界平衡点失稳时会产生超临界Hopf分岔,即从平衡点处分岔出稳定的极限环,进而得到了Brusselator系统出现Hopf分岔所需的参数条件;最后,数值模拟的结果显示了与理论分析的一致性. 相似文献
20.
分析两种情况下低阶大气环流模型的分岔特性,利用多尺度法研究模型的Hopf分岔类型及周期解的稳定性,并通过数值仿真实验验证理论分析的正确性. 相似文献