共查询到18条相似文献,搜索用时 125 毫秒
1.
2.
实现铁路行业海量的铁路科技信息资源有效地组织管理并提供智能化、专业化的检索和服务,已经成为科研人员迫切期望解决的问题.关键词自动抽取技术是实现信息的智能检索和标引分类的核心技术,本文提出了一种改进TextRank的关键词抽取算法应用于铁路文献关键词的抽取,该算法融合多个特征因素改进词汇节点的初始权重设置,并利用Word2Vec训练的词向量表征改进词节点间的转移概率.实验结果表明:本文所提出的关键词抽取算法相对于经典的TextRank和TF-IDF算法在准确率,召回率以及F值上都有较大的提升.与TextRank相比,F值提升了13.9%. 相似文献
3.
针对现有突发事件演化关系抽取方法仅利用了句子本身的信息而忽略了背景知识的问题,引入概念图谱进行特征拓展,以获得更多的语义信息来改善演化关系抽取效果。首先根据概念图谱构建突发事件语义网络,通过特征迭代选择算法获得演化因子的概念特征,然后联合概念特征与突发事件文本作为双向门控循环单元(BiGRU)模型的输入进行特征学习,并利用注意力(Attention)机制对输出的特征信息序列实施加权变换,最后将学习到的特征序列输入到分类器进行演化关系分类。实验结果表明,所提出的基于概念图谱与BiGRU-Att模型的方法相比于现有方法,在准确率、召回率和F_1值等评价指标上均有提升。 相似文献
4.
现有的中文事件触发词抽取方法大多数采用特征工程和触发词扩展方法, 无法利用同一文档中各个触发词实例之间的内在关系。为了解决上述问题, 基于马尔科夫逻辑网络(MLN), 利用核心词素, 训练语料中触发词实例填充真假事件的概率, 以及触发词实例间的关系等信息来推导测试集中缺乏有效上下文信息和低可信度的触发词实例。在ACE 2005 中文语料上的实验结果表明, 与基准系统相比, 该方法在触发词识别和事件类型分类阶段F1值分别提高3.65%和2.51%。 相似文献
5.
实体关系抽取在挖掘结构化事实的信息抽取系统中扮演着重要的角色。近年来,深度学习在关系抽取任务中取得了显著的成果,同时,注意力机制也逐步地融入到神经网络中,进一步提高了关系抽取的性能。但是,目前的注意力机制主要关注一些低层次的特征,比如词汇等。本文提出一种基于高层语义注意力机制的分段卷积神经网络模型(PCNN_HSATT,high-level semantic attention-based piecewise convolutional neural networks),该模型将注意力机制设置在分段最大池化层后,动态地关注了高层次的语义信息。除此之外,由于中文实体关系语料稀疏性较大,本文利用同义词词林对COAE2016语料进行增强以扩大数据规模。最后在COAE2016和ACE2005的中文语料上进行实验,F1值分别达到了78.41%和73.94%,与效果最好的SVM方法相比分别提高了10.45%和0.67%,这充分证明了PCNN_HSATT模型在中文关系抽取上的有效性。 相似文献
6.
关系抽取任务旨在从文本中抽取实体对之间的关系,是当前自然语言处理领域的热门方向之一.由于中文具有复杂的句式和语法,导致现有的神经网络提取的特征以及语义表示能力较差,从而影响中文关系抽取的性能.汉字是象形文字,其字形结构在一定程度上隐含了字义,为此提出了包含字形级别实体表示的BERT_BI-GRU_Glyph模型.模型中... 相似文献
7.
事件触发词识别是事件抽取技术中核心任务之一,在面向微博的突发事件触发词识别中,提出一种基于扩展触发词表和多值分类模型(P-Multi模型)相融合的触发词识别方法,进行事件触发词识别。以多值分类模型以扩展触发词为基础,结合基于模式规则匹配,对文本进行潜在语义分析,进一步挖掘触发词语义信息,将模式匹配和语义分析融合在微博突发事件触发词识别之中。实验结果在触发词识别准确率、召回率上均有所提升,证明了该方法的有效性。 相似文献
8.
知识抽取任务是从非结构化的文本数据抽取三元组关系(头实体-关系-尾实体)。现有知识抽取方法分为流水式方法和联合抽取方法。流水式方法将命名实体识别和实体知识抽取分别用各自的模块抽取,这种方式虽然有较好的灵活性,但训练速度较慢。联合抽取的学习模型是一种通过神经网络实现的端到端的模型,同时实现实体识别和知识抽取,能够很好地保留实体和关系之间的关联,将实体和关系的联合抽取转化为一个序列标注问题。基于此,本文提出了一种基于字词混合和门控制单元(Gated Recurrent Unit, GRU)的科技文本知识抽取(MBGAB)方法,结合注意力机制提取中文科技资源文本的关系;采用字词混合的向量映射方式,既在最大程度上避免边界切分出错,又有效融入语义信息;采用端到端的联合抽取模型,利用双向GRU网络,结合自注意力机制来有效捕获句子中的长距离语义信息,并且通过引入偏置权重来提高模型抽取效果。 相似文献
9.
研究了基于支持向量机(Support Vector Machine,SVM)方法下的生物医学事件触发词识别的问题.利用SVM对事件抽取的过程进行分类,建立相应的模型来对生物医学事件中的触发词进行识别,得到了相应的实验结果,并验证了此方法的可行性. 相似文献
10.
融合门控机制的远程监督关系抽取方法 总被引:1,自引:0,他引:1
提出一种融合门控机制的远程监督关系抽取方法。首先在词级别上自动选择正相关特征, 过滤与关系标签无关的词级别噪声; 然后在门控机制内引入软标签的思想, 弱化硬标签对噪声过滤的影响; 最后结合句子级别的噪声过滤, 提升模型的整体性能。在公开数据集上的实验结果表明, 相对于句子级别噪声过滤方法, 所提方法的性能有显著提高。 相似文献
11.
提出一种复杂系统内多源传感器的故障诊断方法.利用多源传感器数据之间的相关性,使用卷积神经网络提取不同传感器之间的联系和特征.在卷积网络中,设计了传感器数据标定模块使得网络更关注学习与故障信号相关的传感器数据.利用循环网络对传感器自身的时序特征建模,引入跳跃连接和辅助损失函数降低网络的训练难度.最后综合时空特征,一次计算得到故障分类结果和故障参数估计.仿真结果表明,改进后的CNN-GRU网络能够实时准确地诊断传感器的固定偏差故障和漂移偏差故障,传感器数据标定模块和跳跃连接的引入有效地提高了诊断算法的准确率和精度. 相似文献
12.
提出一种基于关键 $n$-grams 和门控循环神经网络的文本分类模型. 模型采用更为简单高效的池化层替代传统的卷积层来提取关键的 $n$-grams 作为重要语义特征, 同时构建双向门控循环单元(gated recurrent unit, GRU)获取输入文本的全局依赖特征, 最后将两种特征的融合模型应用于文本分类任务. 在多个公开数据集上评估模型的质量, 包括情感分类和主题分类. 与传统模型的实验对比结果表明: 所提出的文本分类模型可有效改进文本分类的性能, 在语料库 20newsgroup 上准确率提高约 1.95%, 在语料库 Rotton Tomatoes 上准确率提高约 1.55%. 相似文献
13.
提出了基于编码器?解码器结构的路面平整度预测模型。对比分析了不同网络层的表现,并比较了网络层个数、隐藏节点数、数据时间窗口对模型精度的影响。在美国交通部公开的LTPP(long-term pavement performance)数据库的基础上构建了国际平整度指数(IRI)数据集,并对模型进行了训练和评估。结果表明:采用门控循环单元(GRU)网络层的编码器?解码器结构的预测性能最好,优于经典的机器学习模型XGBoost和单独长短期记忆(LSTM)网络。通过特征随机打乱的方式对不同输入特征的重要性进行了评估,结果显示路面结构和温度对于路面平整度预测比较重要,在数据库建设时应注意对这些数据的收集。 相似文献
14.
为解决食品安全领域关系抽取数据集体量小且关系种类复杂,普通网络模型无法充分进行特征学习的问题,提出了一种融合对抗训练和胶囊网络的食品安全领域关系抽取模型GAL-CapsNet。该模型使用双向长短期记忆网络提取文本序列的全局特征,并通过胶囊网络的动态路由机制获取高层次的局部特征,具有较强的特征提取能力,同时在嵌入层加入对抗训练提升模型的鲁棒性,从而有效提高了关系抽取任务的效果。在本文所用的食品安全领域数据集上的实验结果显示:对比其他深度神经网络方法,GAL-CapsNet在关系抽取任务中的精确率、召回率和F1值均有明显提升,分别达到了85.91%、82.82%、84.33%,证明了模型在食品安全领域数据集上的有效性。 相似文献
15.
医疗文本具有实体密度高、句式冗长等特点,简单的神经网络方法不能很好地捕获其语义特征,因此提出一种基于预训练模型的混合神经网络方法。首先使用预训练模型获取动态词向量,并提取实体标记特征;然后通过双向长短期记忆网络获取医疗文本的上下文特征,同时使用卷积神经网络获取文本的局部特征;再使用注意力机制对序列特征进行加权,获取文本全局语义特征;最后将实体标记特征与全局语义特征融合,并通过分类器得到抽取结果。在医疗领域数据集上的实体关系抽取实验结果表明,新提出的混合神经网络模型的性能比主流模型均有提升,说明这种多特征融合的方式可以提升实体关系抽取的效果。 相似文献
16.
基于领域知识和词向量的词义消歧方法 总被引:3,自引:0,他引:3
利用无标注文本构建词向量模型,结合特定领域的关键词信息,提出一种词义消歧方法。以环境领域的待消歧文本作为评测语料,通过与Lesk等其他消歧方法进行比较,证明了所提方法的有效性。通过引入不同的领域知识,证明该方法亦可在其他领域的文本消歧任务中加以应用。 相似文献
17.
18.
为了提升交通标志的检测效率,研究了基于RGB归一化交通标志阈值分割算法和基于HSI颜色模型的交通标志阈值分割算法,对比分析了两种分割算法的性能。针对分割后二值图像交通标志虚警率高的问题,研究了标志的区域特性,提出了基于区域特性的交通标志提取阈值处理方法,为进一步提升基于形状特征或基于机器学习的交通标志检测效率奠定了坚实基础。 相似文献