首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
首先, 以世界海洋地图集2013(WOA13)海洋数据为实验数据, 提出将不等距微分法、 垂直梯度法应用于海洋数据预处理、 海洋区域划分和跃层分析中, 并通过对多种神经网络在基于WOA13海洋三维数据二分类实验的性能分析, 选取残差网络作为二分类实验的网络模型, 在三层残差网络模型基础上增加了Dropout保留层以防止过拟合. 其次, 将残差网络模型用于温跃层分析判定, 并针对改进模型进行超参数优化、 残差单元改进、 保留率调整等对比实验. 实验结果表明, 改进的ResNet 26网络对WOA13海洋区域数据的温跃层数据分类有效, 分类准确率超过94%.  相似文献   

2.
为了提高癫痫脑电图(EEG)的识别精度,提出一种基于改进残差网络的癫痫脑电自动识别算法。首先对EEG信号进行归一化,然后利用改进的残差模块构建一维深度残差网络,将其用于自主学习EEG的内在特征,最后利用Softmax分类器实现癫痫的自动识别。为了评估模型的性能,采用十折交叉验证对波恩大学的癫痫数据集进行实验。实验结果表明,该算法能够有效识别癫痫EEG类别,具有较高的识别准确率。  相似文献   

3.
针对目前的视线估计算法准确度较低的问题,提出一种基于浅层残差网络的算法。利用残差网络结构特点,对图片在不同层次提取到的特征进行融合计算。实验表明,使用基于浅层残差网络结构的算法与使用LeNet-5 结构算法相比,准确率提升了近 8. 5% ,视线估计算法准确度得到了有效的提升。  相似文献   

4.
本文提出一种基于挤压和激励残差网络的歌声检测算法,运用该算法,不需要对音乐信号进行复杂的特征工程处理,仅需对网络输入简单朴素的声学特征,便能通过多层次卷积以及挤压和激励操作,学习到更多的有效特征,从而达到比当前流行的检测算法更强的性能.算法中,残差结构使得网络可以轻松扩展深度,挤压和激励模块能对深度残差网络中学习到的多...  相似文献   

5.
微波关联成像将量子强度关联成像的思想扩展到微波领域,不仅很好地解决了传统雷达无法进行高分辨凝视成像以及复杂的运动补偿等问题,还具有分辨率高、抗干扰能力强等特点,受到广泛关注.针对微波关联成像传统重构算法在低采样数条件下重构质量差问题,将残差网络和卷积神经网络应用于微波关联成像重构中,提出一种基于残差网络的微波关联成像方法,以雷达接收机回波数据作为网络的输入,依次通过训练好的特征提取网络和图像增强网络,进行高质量图像反演,并将文中算法与伪逆算法和压缩感知算法进行仿真对比分析.仿真结果表明:在相同采样率下,文中算法成像质量均高于其他算法.同时,在不牺牲图像质量的条件下,单张图像重构执行程序所耗时间约为0.06s,提高了图像重建的速度,对工程应用有重要意义.  相似文献   

6.
为使轴承故障诊断工作更加准确与智能化,构建了一种基于Inception结构和残差结构的卷积神经网络(CNN:Convolutional Neural Network),提出一种新的轴承故障诊断方法。首先使用短时傅里叶变换(STFT:Short Time Fourier Transform)将滚动轴承原始一维信号转变为二维时频图,分为训练集、验证集和测试集;然后使用训练集对搭建的Inception-残差网络模型进行迭代,不断更新网络参数,并由验证集检验模型是否出现过拟合现象;最后将训练好的模型应用于测试集,并通过输出层的分类器输出诊断结果。最终由实验证明所提方法的可行性,对轴承故障分类的平均准确率到达了99.98%±0.02%,相对于其他方法具有较高的准确率和稳定性。  相似文献   

7.
通过实验研究提出一种基于残差网络(ResNet)的锈蚀钢筋分类方法,为开发锈蚀钢筋现场准确定量评价方法提供新思路和技术参考.以1478根直径12mm和14mm,锈蚀率1.45%~56.10%的钢筋为研究对象,利用工业相机在实验室条件下拍摄图像,结合数据增强技术,共获得23648张样本图像,并根据锈蚀率确定11类标签.基于深度卷积神经网络搭建ResNet结构,并利用Adam算法进行迭代优化,通过对比不同数据集的实验结果评估分类准确率和训练轮数.为验证所提方法的适用性,将不同直径钢筋的样本图像组合成6种数据集进行训练与测试.研究表明,经过100次迭代训练,针对6种数据集的钢筋锈蚀程度分类准确率均在93.2%以上,最高达98.8%.该方法支持混合直径的锈蚀钢筋高精度分类,具有良好的实际应用性.  相似文献   

8.
马铃薯叶部病害严重制约着马铃薯的产量,为此提出了一种基于注意力和残差思想的深度卷积神经网络模型RANet.依据注意力机制,在RANet中构建并行池化的注意力模块,以增强网络的特征提取能力,并借助残差思想避免注意力模块造成的特征值衰减.以早疫病初期、早疫病晚期、晚疫病初期、晚疫病晚期和健康叶片的叶部图像为研究对象,RAN...  相似文献   

9.
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升.现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力.为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络...  相似文献   

10.
11.
         下载免费PDF全文
Current research works focusing on the image recognition of crop disease in simple background have achieved great success. However, when handling the problem of crop disease recognition with various noise and complex backgrounds, it is difficult to meet the requirement of recognition accuracy. To address these issues, a new high-order residual convolution neural network for crop disease recognition is proposed, which can realize crop disease recognition that is both accurate and anti-interference. Extensive experimental results demonstrate that the proposed method has high accuracy, strong robustness as well as good anti-interference ability, and can better meet the practical application requirements for crop disease recognition.  相似文献   

12.
为了对灾难场景图像进行快速分析和识别,提出了一种基于多分辨率卷积神经网络和残差注意力机制(attention module)相结合的图像分类模型.首先,对灾难场景数据集进行预处理,在相同类型的条件下将其随机划分为训练集和测试集.基于改进的卷积神经网络(convolutional neural network,CNN),...  相似文献   

13.
针对目前飞机腐蚀铆钉分类准确率较低,且以手工检测为主的现状,提出一种基于Tree结构的CNN(Convolutional Neural Networks)分类算法用于飞机铆钉腐蚀分类.算法中Tree的深度和节点数由普通结构的CNN分类方法计算得到的铆钉类别的混淆矩阵决定,对于5分类的飞机铆钉实验,Tree的深度为3.经...  相似文献   

14.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性.   相似文献   

15.
全球导航卫星系统(GNSS)拒止时,GNSS/惯性导航系统(INS)组合导航系统的性能严重下降,导致无人机集群导航误差快速发散.目前,利用神经网络预测位置与速度代替GNSS导航信息可校正无人机INS误差,但该方法仍存在定位误差较高且在轨迹突变时预测精度急剧下降的问题.因此,提出了一种基于卷积-双向长短时记忆网络联合残差补偿的位置与速度预测方法,用于提高位置与速度预测精度.首先,针对GNSS拒止后GNSS/INS组合导航系统定位误差较高的问题,提出卷积神经网络(CNN)与双向长短时记忆网络(BiLSTM)的融合模型,该模型可建立惯性测量单元(IMU)动力学测量数据与GNSS导航信息之间的关系,实现较准确的位置和速度预测.其次,针对轨迹突变时预测效果急剧下降的问题,提出并行CNN-BiLSTM回归架构,在预测位置与速度的同时,挖掘IMU动力学测量数据、预测值与预测残差之间的关系,预测并补偿预测残差,增强模型在轨迹突变时的预测精度.仿真结果表明,所提模型在预测准确性、有效性和稳定性方面都优于CNN-LSTM、LSTM网络模型.  相似文献   

16.
针对传统的遥感图像目标检测中面临的小样本以及目标样本分布不均衡等问题, 提出了一种基于改进的卷积神经网络(convolutional neural network, CNN)的遥感图像小样本目标检测算法. 首先, 该算法利用 $K$ 近邻($K$-nearest neighbor, kNN)回归分别对每个点和卷积层提取特征构建局部邻域; 同时, 通过最大池化聚合所有局部特征进行全局特征表示; 最后, 采用全连接层与缩放指数型线性单元(scaled expected linear unit, SELU)激活函数计算各类别对应的概率并分类. 实验结果表明, 该算法能够更有效地融合局部特征, 提高了遥感图像小样本目标识别与检测的精度, 同时保持信息的非局部扩散.  相似文献   

17.
针对传统的遥感图像目标检测中面临的小样本以及目标样本分布不均衡等问题, 提出了一种基于改进的卷积神经网络(convolutional neural network, CNN)的遥感图像小样本目标检测算法. 首先, 该算法利用 $K$ 近邻($K$-nearest neighbor, kNN)回归分别对每个点和卷积层提取特征构建局部邻域; 同时, 通过最大池化聚合所有局部特征进行全局特征表示; 最后, 采用全连接层与缩放指数型线性单元(scaled expected linear unit, SELU)激活函数计算各类别对应的概率并分类. 实验结果表明, 该算法能够更有效地融合局部特征, 提高了遥感图像小样本目标识别与检测的精度, 同时保持信息的非局部扩散.  相似文献   

18.
基于混沌神经网络的语音识别方法   总被引:4,自引:0,他引:4  
基于语音信号的时变特性,研究了神经网络语音识别的方法.把混沌特性引入到神经元,构造了一种新的多层混沌神经网络结构,同时推导了相应的学习算法.把这种混沌神经网络用于语音识别,并与常用的神经网络语音识别方法作了比较.实验结果表明,混沌神经网络方法的平均识别率要高于同等条件下常用神经网络方法的识别率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号