首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
首先, 以世界海洋地图集2013(WOA13)海洋数据为实验数据, 提出将不等距微分法、 垂直梯度法应用于海洋数据预处理、 海洋区域划分和跃层分析中, 并通过对多种神经网络在基于WOA13海洋三维数据二分类实验的性能分析, 选取残差网络作为二分类实验的网络模型, 在三层残差网络模型基础上增加了Dropout保留层以防止过拟合. 其次, 将残差网络模型用于温跃层分析判定, 并针对改进模型进行超参数优化、 残差单元改进、 保留率调整等对比实验. 实验结果表明, 改进的ResNet 26网络对WOA13海洋区域数据的温跃层数据分类有效, 分类准确率超过94%.  相似文献   

2.
为了提高癫痫脑电图(EEG)的识别精度,提出一种基于改进残差网络的癫痫脑电自动识别算法。首先对EEG信号进行归一化,然后利用改进的残差模块构建一维深度残差网络,将其用于自主学习EEG的内在特征,最后利用Softmax分类器实现癫痫的自动识别。为了评估模型的性能,采用十折交叉验证对波恩大学的癫痫数据集进行实验。实验结果表明,该算法能够有效识别癫痫EEG类别,具有较高的识别准确率。  相似文献   

3.
针对目前的视线估计算法准确度较低的问题,提出一种基于浅层残差网络的算法。利用残差网络结构特点,对图片在不同层次提取到的特征进行融合计算。实验表明,使用基于浅层残差网络结构的算法与使用LeNet-5 结构算法相比,准确率提升了近 8. 5% ,视线估计算法准确度得到了有效的提升。  相似文献   

4.
本文提出一种基于挤压和激励残差网络的歌声检测算法,运用该算法,不需要对音乐信号进行复杂的特征工程处理,仅需对网络输入简单朴素的声学特征,便能通过多层次卷积以及挤压和激励操作,学习到更多的有效特征,从而达到比当前流行的检测算法更强的性能.算法中,残差结构使得网络可以轻松扩展深度,挤压和激励模块能对深度残差网络中学习到的多...  相似文献   

5.
微波关联成像将量子强度关联成像的思想扩展到微波领域,不仅很好地解决了传统雷达无法进行高分辨凝视成像以及复杂的运动补偿等问题,还具有分辨率高、抗干扰能力强等特点,受到广泛关注.针对微波关联成像传统重构算法在低采样数条件下重构质量差问题,将残差网络和卷积神经网络应用于微波关联成像重构中,提出一种基于残差网络的微波关联成像方法,以雷达接收机回波数据作为网络的输入,依次通过训练好的特征提取网络和图像增强网络,进行高质量图像反演,并将文中算法与伪逆算法和压缩感知算法进行仿真对比分析.仿真结果表明:在相同采样率下,文中算法成像质量均高于其他算法.同时,在不牺牲图像质量的条件下,单张图像重构执行程序所耗时间约为0.06s,提高了图像重建的速度,对工程应用有重要意义.  相似文献   

6.
为使轴承故障诊断工作更加准确与智能化,构建了一种基于Inception结构和残差结构的卷积神经网络(CNN:Convolutional Neural Network),提出一种新的轴承故障诊断方法。首先使用短时傅里叶变换(STFT:Short Time Fourier Transform)将滚动轴承原始一维信号转变为二维时频图,分为训练集、验证集和测试集;然后使用训练集对搭建的Inception-残差网络模型进行迭代,不断更新网络参数,并由验证集检验模型是否出现过拟合现象;最后将训练好的模型应用于测试集,并通过输出层的分类器输出诊断结果。最终由实验证明所提方法的可行性,对轴承故障分类的平均准确率到达了99.98%±0.02%,相对于其他方法具有较高的准确率和稳定性。  相似文献   

7.
通过实验研究提出一种基于残差网络(ResNet)的锈蚀钢筋分类方法,为开发锈蚀钢筋现场准确定量评价方法提供新思路和技术参考.以1478根直径12mm和14mm,锈蚀率1.45%~56.10%的钢筋为研究对象,利用工业相机在实验室条件下拍摄图像,结合数据增强技术,共获得23648张样本图像,并根据锈蚀率确定11类标签.基于深度卷积神经网络搭建ResNet结构,并利用Adam算法进行迭代优化,通过对比不同数据集的实验结果评估分类准确率和训练轮数.为验证所提方法的适用性,将不同直径钢筋的样本图像组合成6种数据集进行训练与测试.研究表明,经过100次迭代训练,针对6种数据集的钢筋锈蚀程度分类准确率均在93.2%以上,最高达98.8%.该方法支持混合直径的锈蚀钢筋高精度分类,具有良好的实际应用性.  相似文献   

8.
马铃薯叶部病害严重制约着马铃薯的产量,为此提出了一种基于注意力和残差思想的深度卷积神经网络模型RANet.依据注意力机制,在RANet中构建并行池化的注意力模块,以增强网络的特征提取能力,并借助残差思想避免注意力模块造成的特征值衰减.以早疫病初期、早疫病晚期、晚疫病初期、晚疫病晚期和健康叶片的叶部图像为研究对象,RAN...  相似文献   

9.
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升.现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力.为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络...  相似文献   

10.
11.
摘 要:当前在深度学习上对烟雾图像和视频识别较少,目前存在的问题是烟雾视频图像第一帧识别率低,覆盖范围小,自适应较差的情况。本文算法改变了ResNet结构,实现精确的烟雾区域检测。在实验中经过5000张不同烟雾图像的数据集学习,实验结果准确地识别了烟雾图片,为大范围的火灾烟雾报警提供了一种有效方案。  相似文献   

12.
基于混沌神经网络的语音识别方法   总被引:4,自引:0,他引:4  
基于语音信号的时变特性,研究了神经网络语音识别的方法.把混沌特性引入到神经元,构造了一种新的多层混沌神经网络结构,同时推导了相应的学习算法.把这种混沌神经网络用于语音识别,并与常用的神经网络语音识别方法作了比较.实验结果表明,混沌神经网络方法的平均识别率要高于同等条件下常用神经网络方法的识别率.  相似文献   

13.
针对传统插值法存在的图像细节不能很好恢复的不足,利用卷积神经网络作为残差插值法的后处理操作,提出了一种基于残差插值和卷积神经网络的去马赛克算法。方法分为初始去马赛克和细节恢复后处理两部分。先用改进的基于梯度的快速残差插值法实现初步去马赛克插值,并针对恢复图像中包含了彩色伪影,细节丢失等问题,再使用深度残差网络学习恢复图像与理想全彩色图像之间的映射,实现后处理。在Kodak数据集和IMAX数据集上的实验结果表明,该方法结果在主观视觉特性和客观评价指标两方面相较于传统方法都有明显改进。  相似文献   

14.
为了对灾难场景图像进行快速分析和识别,提出了一种基于多分辨率卷积神经网络和残差注意力机制(attention module)相结合的图像分类模型.首先,对灾难场景数据集进行预处理,在相同类型的条件下将其随机划分为训练集和测试集.基于改进的卷积神经网络(convolutional neural network,CNN),...  相似文献   

15.
为了克服传统电机故障检测方法的准确率低、测量过程为侵入式、严重依赖先验知识的缺点,提出了一种基于卷积神经网络的非侵入式电机故障检测方法.通过将电机与其他设备共同工作时的总电源信号作为检测样本,实现检测过程的非侵入式,并基于残差优化卷积网络结构进行神经网络训练,最终实现电机超载、单相短路及相间短路故障的非侵入式检测与分类...  相似文献   

16.
针对时间序列数据样本少、部分信息未知的特点,提出将灰色理论与神经网络相结合构建灰色神经网络,充分利用两种方法的优势对小样本时间序列数据进行有效挖掘.为了提高模型的预测精度,提出利用残差对模型进行有效修正.实验分析表明,残差修正灰色神经网络具有较高的预测精度,适合于小样本时间序列数据的挖掘.  相似文献   

17.
提出一种复杂系统内多源传感器的故障诊断方法.利用多源传感器数据之间的相关性,使用卷积神经网络提取不同传感器之间的联系和特征.在卷积网络中,设计了传感器数据标定模块使得网络更关注学习与故障信号相关的传感器数据.利用循环网络对传感器自身的时序特征建模,引入跳跃连接和辅助损失函数降低网络的训练难度.最后综合时空特征,一次计算得到故障分类结果和故障参数估计.仿真结果表明,改进后的CNN-GRU网络能够实时准确地诊断传感器的固定偏差故障和漂移偏差故障,传感器数据标定模块和跳跃连接的引入有效地提高了诊断算法的准确率和精度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号