首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si_3N_4 to the CaO–SiO_2–CaF_2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization(DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.  相似文献   

2.
Crystallization properties play an important role in keeping a smooth running of continuous casting process and high surface quality of cast strands. To reduce fluorine pollution in slag, a new type of CaO-SiO2-Na2O (CSN) based mold flux was studied. The solidification and crystallization properties, including crystallization temperature, crystallization ratio and solidification mineragraphy, were measured, which were compared with the CaO-SiO2-CaF2 (GF) mold flux. The results show that the crystallization performance is equal to the high fluoride mold powder and CSN can be used for peritectic steel grades sensitive to longitudinal cracking in continuous casting.  相似文献   

3.
The low-reactivity mold flux with low SiO2 content is considered suitable for the continuous casting of high-aluminum steel since it can significantly reduce the reaction between Al in steel and SiO2 in mold flux. However, the traditional low-reactivity mold flux still presents some problems such as high viscosity and strong crystallization tendency. In this study, the co-addition of Li2O and B2O3 in CaO–Al2O3–10wt%Si O...  相似文献   

4.
To improve the heat transfer capability and the crystallization property of the traditional mold flux, CaF2 was replaced with B2O3. Then, the influences of CeO2 on the heat transfer and the crystallization of the CaF2-bearing mold flux and the new mold flux with 10wt% B2O3 were studied using a slag film heat flux simulator and X-ray diffraction (XRD). The results revealed that the addition of CeO2 reduced the heat transfer by increasing the solid slag thickness and the crystallization of two mold fluxes. However, CeO2 had less effect on the B2O3-containing mold flux compared with the CaF2-bearing mold flux. According to the analyses, the CeO2 contents in the CaF2-bearing mold flux and the B2O3-containing mold flux should not exceed 8wt% and 12wt%, respectively. Therefore, these experimental results are beneficial to improve and develop the mold flux for casting rare earth alloy steels.  相似文献   

5.
Mold fluxes having adaptable properties were developed in the laboratory to solve quality defects, such as depressions and longitudinal cracks when casting hypo-peritectic steel at high casting speed. Firstly, the effect of components on the high basicity mold flux properties was first studied using the orthogonal method. In the scope of the studied content, Li2O has the largest effect on the melting temperature, and the least effect on the viscosity; CaF2 has the largest effect on the viscosity, and the least effect on the melting temperature; Na2O and CaO/SiO2 have no obvious influence on the melting temperature and viscosity. Secondly, two powders (Z1 and Z6) have reasonable viscosity-temperature curves, higher solidification temperatures, and porous structure after solidification, but the crystal property of Z6 is worse than that of Z1, and thus Z1 is more suitable for continuous casting hypo-peritectic steel at high casting speed. Thirdly, a higher basicity of powder, a less free enthalpy of crystal compound, and a lower baffle energy are good for a higher tendentiousness of crystal.  相似文献   

6.
A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag (CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63wt% to 42.63wt% was conducted. The melting properties were investigated with a melting-point apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.  相似文献   

7.
In this study, the effect of melting temperature on the microstructural evolutions, behavior, and corrosion morphology of Hadfield steel in the casting process is investigated. The mold was prepared by the sodium silicate/CO2 method, using a blind riser, and then the desired molten steel was obtained using a coreless induction furnace. The casting was performed at melting temperatures of 1350, 1400, 1450, and 1500℃, and the cast blocks were immediately quenched in water. Optical microscopy was used to analyze the microstructure, and scanning electron microscopy (SEM) and X-ray diffractrometry (XRD) were used to analyze the corrosion morphology and phase formation in the microstructure, respectively. The corrosion behavior of the samples was analyzed using a potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in 3.5wt% NaCl. The optical microscopy observations and XRD patterns show that the increase in melting temperature led to a decrease of carbides and an increase in the austenite grain size in the Hadfield steel microstructure. The corrosion tests results show that with increasing melting temperature in the casting process, Hadfield steel shows a higher corrosion resistance. The SEM images of the corrosion morphologies show that the reduction of melting temperature in the Hadfield steel casting process induced micro-galvanic corrosion conditions.  相似文献   

8.
By employing a two-dimensional transient thermo-mechanical coupled finite element model for simulating shell heat transfer behaviors within a slab continuous casting mold, we predicted the evolution of shell deformation and the thermal behaviors, including the mold flux film dynamical distribution, the air gap formation, as well as the shell temperature field and the growth of carbon steel solidification, in a 2120 mm × 266 mm slab continuous casting mold. The results show that the shell server deformation occurs in the off-corners in the middle and lower parts of the mold and thus causes the thick mold flux film and air gap to distribute primarily in the regions of 0–140 mm and 0–124 mm and 0–18 mm and 0–10 mm, respectively, from the corners of the wide and narrow faces of the shell under typical casting conditions. As a result, the hot spots, which result from the thick mold flux film filling the shell/mold gap, form in the regions of 20–100 mm from the corners of the wide and narrow faces of the shell and tend to expand as the shell moves downward.  相似文献   

9.
Experimental studies on the rheological properties of a CaO–SiO2–Al2O3–MgO–TiO2–(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.  相似文献   

10.
Fluorite Ce0.8Sm0.2O2-δ (SDC) nanopowder with a crystallite size of 15 nm was synthesized by a co-precipitation method. An SDC porous layer was coated onto a BaCo0.7Fe0.2Nb0.1O3-δ (BCFN) mixed conductor to improve its oxygen transport behavior. The results show that the SDC-coated BCFN membrane exhibits a remarkably higher oxygen permeation flux (JO2) than the uncoated BCFN in the partial oxidation of coke oven gas (COG). The maximum (JO2) value of the SDC-coated BCFN is 18.28 mL·min-1·cm-2 under a COG/air flux of 177 mL·min-1/353 mL·min-1 at 875℃ when the thickness of the BCFN membrane is 1 mm; this (JO2) value is 23% higher than that of the uncoated BCFN membrane. This enhancement is likely because of the higher oxygen ionic conductivity of SDC, which supplies oxygen vacancies and accelerates oxygen exchange on the membrane/coating layer/gas three-phase boundary.  相似文献   

11.
Satisfying the mold-flux performance requirements for high-speed continuous casting necessitates the development of a new non-Newtonian-fluid mold flux with shear-thinning behavior, i.e., a mold flux whose viscosity is relatively high under lower shear rates and relatively low under higher shear rates. In this work, a mold flux that exhibits shear-thinning behavior was developed by adding different amounts of Si3N4 to the CaO-SiO2-CaF2 mold flux. The shear-thinning behavior was investigated using a rotational viscometer. In addition, the microstructure of the newly prepared slags was studied by high-temperature Raman spectroscopy and X-ray photoelectron spectroscopy. The results showed that the mechanism of shear-thinning was attributable to a temporary viscosity loss caused by the one-way shear stress, whereas the corresponding magnitude of shear-thinning was closely related to the degree of polymerization (DP). Finally, the non-Newtonian fluid mold flux was used for laboratory casting tests, which revealed that the mold flux could reduce slag entrapment and positively affect the continuous casting optimization.  相似文献   

12.
Work hardening is a well-known phenomenon occurring in crystalline metals during deformation,which has been widely used to increase the strength of metals although their ductility is usually reduced simultaneously. Here we report that the plastic strain of Zr41Ti14Cu12.5Ni10Be22.5 (at.%) bulk metallic glasses has been increased from 0.3% for the as-cast sample to 2.5%-8.0% for samples that have experienced pre-deformation under constrained conditions. The pre-deformed glassy alloys possess more free volume and abundant introduced shear bands,which are believed to promote the activation of shear bands in post-deformation and result in an increase in plasticity. The orientation of the pre-introduced shear bands relative to the loading direction will affect the deformation behavior of pre-deformed samples. The present results show that pre-deformation of this glassy alloy will result in work toughening. This work toughening effect can be removed by isothermal annealing at a sub-Tg (glass transition) temperature,which causes annihilation of free volume and healing of shear bands.  相似文献   

13.
Nanocrystalline powders of ZrO2-8mol%SmO1.5(8SmSZ), ZrO2-8mol%GdO1.5 (8GdSZ), and ZrO2-8mol%YO1.5(8YSZ) were prepared by a simple reverse-coprecipitation technique. Differential thermal analysis/thermogravimetry (DTA/TG), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM) were used to study the phase transformation and crystal growth behavior. The DTA results showed that the ZrO2 freeze-dried precipitates crystallized at 529, 465, and 467℃ in the case of 8SmSZ, 8GdSZ, and 8YSZ, respectively. The XRD and Raman results confirmed the presence of tetragonal ZrO2 when the dried precipitates were calcined in the temperature range from 600 to 1000℃ for 2 h. The crystallite size increased with increasing calcination temperature. The activation energies were calculated as 12.39, 12.45, and 16.59 kJ/mol for 8SmSZ, 8GdSZ, and 8YSZ respectively.  相似文献   

14.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

15.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

16.
In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950℃. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.  相似文献   

17.
The effect of high-speed direct-chill (DC) casting on the microstructure and mechanical properties of Al-Mg2Si in situ composites and AA6061 alloy was investigated. The microstructural evolution of the Al-Mg2Si composites and AA6061 alloy was examined by optical microscopy, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results revealed that an increase of the casting speed substantially refined the primary Mg2Si particles (from 28 to 12 μm), the spacing of eutectic Mg2Si (from 3 to 0.5 μm), and the grains of AA6061 alloy (from 102 to 22 μm). The morphology of the eutectic Mg2Si transformed from lamellar to rod-like and fibrous with increasing casting speed. The tensile tests showed that the yield strength, tensile strength, and elongation improved at higher casting speeds because of refinement of the Mg2Si phase and the grains in the Al-Mg2Si composites and the AA6061 alloy. High-speed DC casting is demonstrated to be an effective method to improve the mechanical properties of Al-Mg2Si composites and AA6061 alloy billets.  相似文献   

18.
Amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were successfully fabricated by mechanical alloying. The microstructure, glass-forming ability, and crystallization behavior of amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The isothermal crystallization kinetics was analyzed by the Johnson–Mehl–Avrami equation. In the results, the supercooled liquid region of the amorphous alloy is as high as 81 K, as determined by non-isothermal DSC curves. The activation energy for crystallization is as high as 312.6 kJ·mol?1 obtained by Kissinger and Ozawa analyses. The values of Avrami exponent (n) imply that the crystallization is dominated by interface-controlled three-dimensional growth in the early stage and the end stage and by diffusion-controlled two- or three-dimensional growth in the middle stage. In addition, the amorphous Al72Ni8Ti8Zr6Nb3Y3 powders were sintered under 2 GPa at temperatures of 673 K and 723 K. The results show that the Vickers hardness of the compacted powders is as high as Hv 1215.  相似文献   

19.
The corrosion behaviors of X52, 3Cr low-alloy steel, and 13Cr stainless steel were investigated in an O2-H2O-CO2 environment at various temperatures and O2-CO2 partial-pressure ratios. The results showed that the corrosion rates of X52, 3Cr, and 13Cr steels increased with increasing temperature. The corrosion rates slowly increased at temperatures less than 100℃ and increased sharply when the temperature exceeded 100℃. In the absence of O2, X52, 3Cr, and 13Cr exhibited uniform corrosion morphology and FeCO3 was the main corrosion product. When O2 was introduced into the system, various forms of Fe2O3 appeared on the surface of the samples. The Cr content strongly influenced the corrosion resistance. The 3Cr steel with a low Cr content was more sensitive to pitting than the X52 or 13Cr steel. Thus, pitting occurred on the surface of 3Cr when 1.25 MPa of O2 was added; this phenomenon is related to the non-uniform distribution of Cr in 3Cr.  相似文献   

20.
The viscosity of CaF2-CaO-Al2O3-MgO-(TiO2) slag was measured using a rotating crucible viscometer. Raman spectroscopy analysis was performed to correlate the viscosity to slag structure. The viscosity of the slag was found to decrease with increasing TiO2 content in the slag from 0 to 9.73wt%. The activation energy decreased from 95.16 kJ/mol to 79.40 kJ/mol with increasing TiO2 content in the slag. The introduction of TiO2 into the slag played a destructive role in Al-O-Al structural units and Q4 units by forming simpler structural units of Q2 and Ti2O64- chain. The amount of Al-O-Al significantly decreased with increasing TiO2 content. The relative fraction of Q4 units in the[AlO4]5--tetrahedral units shows a decreasing trend, whereas the relative fraction of Q2 units and Ti2O64- chain increases with increasing TiO2 content accordingly. Consequently, the polymerization degree of the slag decreases with increasing TiO2 content. The variation in slag structure is consistent with the change in measured viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号