首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
考虑应变软化厚壁圆筒受外压作用统一极限解   总被引:1,自引:0,他引:1  
为了解混凝土或岩石类材料厚壁圆筒受外压作用的承载特性,根据俞茂宏的统一强度理论,考虑材料的应变软化特性,得到了适合应变软化材料的统一强度准则,并据此推导出了混凝土或岩石类材料厚壁圆筒受外压作用的弹性与塑性极限荷载公式.还详细讨论了厚壁圆筒外半径与内半径比、反映中间主剪应力作用以及相应面上的正应力作用对材料破坏影响程度的系数、材料的拉压强度比以及损伤参量等对圆筒极限荷载的影响,得到了一些可供工程设计参考的重要结果.  相似文献   

2.
针对圆形水工隧洞,采用统一强度理论和弹脆塑性模型,考虑了不同工况下主应力顺序变化、不同拉压模量、中主应力以及软化等因素的综合影响,推导了圆形水工隧洞问题弹塑性解答,探讨了不同拉压模量比、中主应力等对隧洞临界压力以及极限压力的影响。算例分析结果表明,对于圆形水工隧洞应正确考虑不同工况下第一主应力的变化,且应重视拉压模量差异的影响,传统的压力隧洞弹塑性解答假定岩土体具有相同的拉压模量使得工程设计偏于保守,考虑拉压模量的不等可以更真实的反映岩土材料的力学特性,以期达到设计经济和安全。该结果为水工压力隧洞的弹塑性分析提供了理论依据,对工程设计具有一定参考价值。  相似文献   

3.
针对目前灰土挤密复合地基桩体极限承载力理论计算值与实测标准值存在较大差异的问题,将单桩加固区的土体视为一定深度的长厚壁圆筒,基于统一强度理论和桩土变形协调条件,推导了桩孔极限内压下的灰土桩极限承载力统一解.讨论中间主应力、桩长和内摩擦角对灰土桩极限承载力的影响特性,并将理论公式计算值与实测标准值进行了对比,吻合较好.研究结果表明:中间主应力对土体所能提供的侧向极限约束力有较大影响;考虑中间主应力影响对岩土材料的强度发挥有着积极作用;增加桩长和灰土的内摩擦角,灰土桩极限承载力相应提高.  相似文献   

4.
碎石桩复合地基应力应变分析   总被引:1,自引:1,他引:1  
在考虑桩 土相互作用的基础上 ,根据桩 土侧向变形协调及竖向变形相等的条件 ,应用弹性理论导出了线弹性状态下桩体及桩周土的应力 应变关系 ,得出了桩体材料屈服时桩 土应力比的计算式 ;利用摩尔 库仑屈服准则导出了桩周土处于极限平衡状态时 ,桩体和桩周土竖向变形的表达式以及碎石桩极限承载力计算式 ;讨论了桩 土应力比与置换率及桩周土变形模量的关系 .研究结果表明 :用碎石桩加固软土地基 ,加固效果较好 ;但用碎石桩来加固土的变形模量大于 8MPa的地基 ,加固效果不明显 .对于碎石桩加固的软土地基 ,应按控制沉降量设计法代替传统的控制承载力设计法进行设计计算 .  相似文献   

5.
基于统一强度理论及太沙基极限平衡原理推导了螺纹桩极限承载力,提出了螺纹桩螺牙单独承载破坏与圆柱形剪切破坏两种模式下临界螺距的确定方法和极限承载力计算方法,讨论了统一强度理论参数b与螺纹桩关键参数对极限承载力的影响.结果表明:螺纹桩的极限承载力是同外径圆桩的1.5~2倍,螺牙提供的极限承载力主要由土体黏聚力、内摩擦角及埋深决定.当b从0增加到1时,螺纹桩极限承载力理论计算值增幅约48%,考虑中主应力对土体强度的影响会使得螺纹桩承载力理论计算结果更加准确.螺纹桩的参数中,螺牙高度bh对其极限承载力影响最大,而螺牙厚度t对承载力基本无影响.设计螺纹桩时可适当增加螺牙高度,以提高螺纹桩极限承载力.  相似文献   

6.
纤维增强混凝土通常通过在混凝土中掺入少量的钢纤维、合成纤维等制成,能有效地改善混凝土的抗拉、抗弯性能,近年来纤维增强混凝土越来越多地应用到厚壁圆筒的制造中.由于Mohr-Coulomb、Mises、Tresca等屈服准则只适合拉、压强度相等的金属类材料,不适用于纤维混凝土,因此本文在讨论纤维增强混凝土软化特性的基础上,基于俞茂宏提出的能考虑中间主应力影响的统一强度理论和材料应变软化特性,得到了适合应变软化材料的统一强度准则,分析了受内压作用纤维增强混凝土厚壁圆管的受力特性,导出了其弹性与塑性极限荷载统一解形式.利用此解,可以很容易得到具有应变软化特性的各种拉、压强度不等材料以及不同纤维增强混凝土材料的厚壁圆管极限荷载解,同时,由于此解既考虑了材料的软化特性的影响又考虑了中间主应力的影响,因此它更符合实际情况。  相似文献   

7.
通过引入承压球壳变形的对称性假设,将承受均匀外压球壳的理论表达简化为筒形板及弹性基础梁的数学模型.引入参数,将切线模量理论等多种模量理论统一表达,在材料应力应变曲线的基础上,得到模量因子曲线和相应的解析表达式.以切线模量理论和双模量理论为例,将2种模量理论应用于钛合金球壳的承载力计算,并将计算值与实验结果进行比较,得出模量理论在耐压壳极限强度计算问题上的有效性和适用范围,为深潜器的初步设计提供参考.  相似文献   

8.
地基加固处理中应用广泛的碎石桩易于在桩顶发生鼓胀变形破坏,为解决此问题,提出一种新型优化复合地基形式,即散体材料-混凝土桩复合地基。采用圆孔扩张理论,基于Mohr-Coulomb屈服准则,用极坐标轴对称问题对散体材料-混凝土桩进行Vesic圆孔扩张压力求解,并由此推导出桩间土体内摩擦角φ=0和φ≠0时散体材料-混凝土桩的极限承载力计算公式。将计算方法应用于已有试验,并展开对比分析,结果表明该计算公式的计算结果与现场试验结果较为接近,验证了基于圆孔扩张理论对该新型桩进行极限承载力计算的准确性。  相似文献   

9.
圆中空夹层钢管混凝土短柱的承载力   总被引:3,自引:0,他引:3  
针对圆中空夹层钢管混凝土轴压短柱的极限承载力,应用薄壁圆筒的统一强度理论极限解,考虑内圆与外圆中空夹层钢管混凝土的内外钢管薄壁效应,提出了计算公式,与文献资料的试验结果做了比较.同时分析了钢管的径厚比、拉压强度比以及中间主应力对圆中空夹层钢管混凝土柱承载力的影响规律.结果表明:把内外钢管看成薄壁圆筒,推导的极限承载力计算公式的计算值与试验值误差小;极限承载力随着径厚比及拉压强度比的增大而减小,随中间主应力的增大而增大.  相似文献   

10.
竖向管式格栅加筋碎石桩承载力计算方法   总被引:3,自引:0,他引:3  
为了研究竖向管式格栅加筋碎石桩承载力的计算方法,根据其受力特性,提出可能发生破坏的3种模式:桩顶鼓出破坏、格栅套筒下方碎石桩鼓出破坏和桩端刺入破坏.基于Brauns的计算方法,给出了桩顶鼓出破坏模式的承载力计算公式,推导出了格栅套筒下方碎石桩鼓出破坏模式的单桩极限承载力的理论计算方法,给出了根据格栅抗拉强度来判断破坏模...  相似文献   

11.
沥青混合料模量是沥青路面结构分析的重要计算参数.对3种高模量沥青混合料及SBS改性沥青混合料和A-70沥青混合料进行动态模量和静态回弹模量试验,分析沥青混合料模量分布规律、影响因素以及动态模量与静态回弹模量的相关性.结果表明:相同试验条件下高模量沥青混合料的模量明显大于对比沥青混合料,且随着频率的降低,高模量沥青混合料的动态模量增大倍数增大;沥青混合料的静态回弹模量与低频下的动态模量呈指数关系,因此当试验条件受限时可采用沥青混合料静态回弹模量值对动态模量值进行预估.  相似文献   

12.
为了研究某些问题,我们构造了模函数.本文介绍模函数的一些性质,并以例题形式列举其应用.  相似文献   

13.
改进和推广了Kadecˇ凸性模定理,并讨论了凸性模对无条件收敛级数和算子级数的应用.  相似文献   

14.
利用保域定理证明最小模原理,并讨论最小模点的取值范围.用最小模原理更简单地证明代数学基本定理,同时证明某些函数有零点存在.  相似文献   

15.
杨氏弹性模量的研究   总被引:1,自引:0,他引:1  
测杨氏弹性模量一般都采用光杠杆法,本文介绍用电学的方法测杨氏弹性模量。  相似文献   

16.
热解碳的纳米硬度及弹性模量   总被引:2,自引:0,他引:2       下载免费PDF全文
借助纳米力学测试系统的纳米压痕法,测定了高温处理前、后的纯热解碳和3D正交编织碳/碳复合材料中热解碳的纳米硬度和弹性模量,讨论了加载和卸载过程的载荷 位移特征.测试结果表明,热解碳在高温处理前,只发生弹性变形,高温处理后不仅发生弹性变形,也产生塑性变形.测得高温处理前纯热解碳的模量为33.84 GPa,高温处理后的热解碳模量为4.65 GPa,二者的差值是乱层结构向石墨结构转变引起的,3D碳/碳复合材料中的热解碳模量为30.08GPa.  相似文献   

17.
通过塑性混凝土弹性模量测试,分析了计算公式中不同P1、P2计算点下塑性混凝土的弹性模量及塑性混凝土弹性模量与轴心抗压强度的关系.研究结果表明:塑性混凝土弹性模量计算点以30%、70%轴心抗压强度为宜;弹性模量与轴心抗压强度具有良好线性关系.  相似文献   

18.
根据二相复合材料理论,通过测试水泥石、砂浆、混凝土的弹性模量,测出集料在砂浆、混凝土中的实际弹性模量值,并就它在砂浆和混凝土弹性模量中的应用作了分析和研究。  相似文献   

19.
介绍用微机测量金属丝杨氏模量的原理和方法.  相似文献   

20.
随着沥青路面力学-经验设计和分析方法的发展,路面材料参数的研究显得越来越重要.文中利用MTS材料试验系统对含有透水基层(ATPB)的ATPB-25和ATPB-30两种沥青混合料进行了动态模量试验测试.试验测试中,根据沥青混合料所处的温度环境设定了不同的测试温度和加载频率.然后根据测试结果生成了该沥青混合料的全时域动态模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号