首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水平连铸坯热应力的计算和分析   总被引:1,自引:0,他引:1  
应用铸坯凝固过程中的热弹塑性应力模型,对马钢水平连铸热试期间的铸坯进行了传热、应力和应变分析计算。定量地反映了铸坯的热应力分布,指出水平连铸铸坯出结晶器后,表面温度回升太大,可能产生中间裂纹和中心裂纹。  相似文献   

2.
用光学显微镜、扫描电镜、透射电镜和能谱分析等方法研究了涟钢CSP热轧板卷边部裂纹的成因.结果表明:连铸坯表面的深振痕是热轧板卷边部裂纹的起源,连铸坯角部过冷导致奥氏体晶界AlN的细小析出,加剧了连铸坯对裂纹的敏感性.连铸坯经过精轧机组的轧制后,连铸坯表面的横裂纹扩展成为热轧板卷的锯齿状裂纹,严重时会造成烂边或掉块.  相似文献   

3.
二次冷却对板坯中间裂纹的影响   总被引:1,自引:0,他引:1  
目前,如何在保证铸坯质量的前提下提高内部质量,特别是防止影响最终产品轧制性能的严重中间裂纹的出现,是转炉一连铸治金工艺路线存在地普遍问题。结合连铸板坯凝固过程的二冷DYNACS冷却模型模拟计算,阐述了二次冷却对铸坯中间裂纹的影响,并在此基础上提出了解决方案。  相似文献   

4.
目前,如何在保证铸坯质量的前提下提高内部质量,特别是防止影响最终产品轧制性能的严重中间裂纹的出现,是转炉一连铸治金工艺路线存在地普遍问题。结合连铸板坯凝固过程的二冷DYNACS冷却模型模拟计算,阐述了二次冷却对铸坯中间裂纹的影响,并在此基础上提出了解决方案。  相似文献   

5.
连铸坯裂纹的成因   总被引:1,自引:0,他引:1  
针对连铸生产的特点和工艺条件,根据唐钢连铸生产实际的状况,结合国内外一些先进钢铁厂连铸坯裂纹的分析报吉,比较详细地总结了连铸生产中铸坯裂纹产生的原因及防止措施。  相似文献   

6.
在建立板坯连铸凝固传热模型的基础上,通过模拟涟钢210转炉厂现行和拟调整的结晶器冷却制度,比较不同结晶器冷却水量对板坯质量影响.结果表明,涟钢210转炉厂结晶器弱冷却有下调空间,结晶器冷却水量为4000/380 L/min时,铸坯角部裂纹发生率最小.  相似文献   

7.
针对连铸生产的特点和工艺条件,根据唐钢连铸生产实际的状况,结合国内外一些先进钢铁厂连铸坯裂纹的分析报吉,比较详细地总结了连铸生产中铸坯裂纹产生的原因及防止措施。  相似文献   

8.
连铸坯表面网状裂纹   总被引:2,自引:0,他引:2  
对连铸坯和热轧厚板表面网状裂纹附近的化学成分及其组织进行了分析,发现裂纹附近存在Cu和Cr元素,裂纹沿着晶界延伸.可见裂纹形成的原因为:结晶器镀铬层磨损导致铜板与连铸坯粘结,液态铜通过奥氏体晶界向铁基体内渗透.富集在奥氏体晶界的铜极大地恶化了钢的塑性是导致裂纹形成的主要原因.在此基础上提出了控制连铸坯和热轧厚板表面网状裂纹的措施.  相似文献   

9.
在连铸生产过程中,二次冷却在很大程度上影响着铸坯的传热状态,从而在铸坯凝固组织的形成过程中有着决定性的作用.连铸坯裂纹是制约其生产产量和质量的主要缺陷之一.通过对圆坯凝固传热的分析,探索影响铸坯裂纹发生的因素.从而从理论上避免裂纹的发生,保证连铸生产无缺陷铸坯.  相似文献   

10.
结晶器内连铸坯热弹塑性应力的有限元分析   总被引:1,自引:0,他引:1  
建立了结晶器内连铸坯热弹塑性应力有限元分析模型,在推导的热弹塑性本构方程中考虑了材料力学性能,屈服函数随温度和应变速率的变化,模拟计算了结晶器内连铸坏应力分布。模拟结果表明,在铸坯的热节约内,高温坯壳受到拉应力的作用,易于产生裂纹,从而说明铸坯偏角区形成的热节约是连铸坯裂纹缺陷乃至漏钢事故发生的诱因。  相似文献   

11.
因铸坯内部质量原因造成轧材探伤不合的原因主要有四个,分别是氢致裂纹,铸坯内部的中心偏析与裂纹,铸坯内部的夹杂物和铸坯内部的带状组织发达。本文针对中厚板生产中出现的轧材分层问题展开分析,从连铸坯的内部质量缺陷和轧钢的压下量等方面分析轧材分层产生的原因及预防措施。  相似文献   

12.
为减少采用CSP工艺生产的Q235B热轧带钢边部裂纹缺陷,分别在Q235B连铸坯和热轧带钢裂纹处进行取样,通过宏观形貌、金相组织、扫描电镜及能谱分析等方法,研究铸坯角部横裂纹与热轧带钢边部裂纹的演变规律和形态变化.结果表明,结晶器卷渣、冷却不均匀是产生连铸坯角部裂纹的主要原因;第2道次过渡带钢的金相组织中出现混晶现象,裂纹边上存在脱碳现象;热轧带钢边部裂纹主要源自于铸坯裂纹,并在轧制过程中得到扩展.根据连铸工艺参数,对边部裂纹缺陷率与液渣层厚度、保护渣消耗量、结晶器振动参数、中间包过热度、结晶器传热参数以及铸坯宽度的关系进行统计分析,并提出相应的边部裂纹控制工艺措施.  相似文献   

13.
37Mn5连铸圆坯凝固过程数学模拟   总被引:2,自引:0,他引:2  
为控制油井管用连铸圆坯质量,基于薄片移动法建立了连铸圆坯凝固传热数学模型,并应用ProCAST软件对37Mn5钢Φ150mm连铸圆坯凝固过程进行了数学模拟,铸坯表面温度模型预测结果与工业试验测温结果相一致.模拟结果表明,在过热度为(20±5)℃,拉速为2.5m.min-1条件下,可以控制结晶器出口坯壳厚度、铸坯液芯长度和铸坯表面温度在合适的范围内,有利于防止铸坯表面裂纹和内部裂纹等缺陷的产生和保证浇铸安全,并实现较高的生产率.  相似文献   

14.
为了减少不恰当连铸二冷操作导致的铸坯内部裂纹等缺陷,在凝固传热模型验证的基础上建立了方坯二维弹塑性应力模型.通过此模型计算了水量优化前后铸坯应力分布情况,获得了铸坯在二冷区的应力分布规律.分析了影响连铸坯内部裂纹的因素,提出预防热裂纹产生的措施,为研究二冷对铸坯质量的影响提供了理论基础,并为优化二冷水量改善铸坯质量提供了依据.  相似文献   

15.
基于蚁群算法的连铸二冷优化   总被引:1,自引:1,他引:0  
连铸二次冷却水量是影响铸坯质量的关键因素之一.为使二冷区内各冷却段间的铸坯表面温度冷却速率和温度回升速率更加趋于合理,减少诱发铸坯产生内部裂纹和表面裂纹的应力因素,根据冶金准则对目标表面温度、矫直点温度、表面最大冷却速率和表面温度回升速率、液芯长度、铸坯的鼓肚等的要求及设备约束条件建立连铸二冷优化模型,并利用蚁群算法对连铸二次冷却水量进行优化,达到提高连铸坯产品质量的目的.  相似文献   

16.
针对传统基于BP神经网络建立的连铸坯质量预测模型训练速度慢、适应能力弱、预测精度低等问题,本文提出一种基于极限学习机的连铸坯质量预测方法,对方大特钢60Si2Mn连铸坯中心疏松和中心偏析缺陷进行预测,并与BP和遗传算法优化BP神经网络预测模型的预测结果进行分析对比.结果表明:BP及GA-BP神经网络预测模型对连铸坯中心疏松和中心偏析缺陷的预测准确率分别为50%、57.5%、70%和72.5%;而基于极限学习机的连铸坯预测模型预测准确率更高,对连铸坯中心疏松和中心偏析缺陷的预测准确率分别为85%和82.5%,且该模型具有极快的运算时间,仅需0.1s.该模型可对连铸坯质量进行迅速准确地分析,为连铸坯质量预测的在线应用提供了一种新的方法.  相似文献   

17.
一、前言连铸坯质量特征是和其工艺及凝固特点紧密相连。由于其凝固壳是在强度很小的高温状态下被强制冷却的同时,不断受到拉坯作用。这将导致铸坯易产生裂纹等缺陷。裂纹的成因,为铸坯受到的应力超过金属本身的强度时,而被拉裂形成裂纹。在连铸过程铸坯受到的应力来源。不外乎由机械,乍用产生的机械应力;由坯壳内外温差引起  相似文献   

18.
为了实现成排连铸坯端面机器人贴标时各连铸坯端面中心坐标的快速提取,提出了先提取连铸坯端面图像角点像面坐标,再计算各连铸坯端面中心像面坐标的研究方案。首先,提出了一种改进型SUSAN角点检测算法,解决了图像中相邻连铸坯端面图像边界间距离过小和连铸坯端面图像角为弧形角所造成的角点漏检问题;然后,提取角点的像面坐标,并确定各封闭区域所包含连铸坯端面个数;最后,采用一种倾斜连铸坯端面图像中心像面坐标的提取方法,计算各连铸坯端面中心像面坐标。应用以上方法进行成排连铸坯端面机器人贴标实验,实验结果表明,连铸坯端面水平和竖直方向贴标位置误差范围分别为-0.625~0.850 mm和-0.550~0.875 mm,完全满足企业对多根连铸坯端面自动贴标位置误差允许值1 mm的要求。所提视觉方法在理论和实际应用上都是可行的,不仅为连铸坯端面贴标机器人提供了准确的贴标位置,而且为矩形图像元素的中心坐标提取提供了一种可靠的方法,具有一定的应用价值。  相似文献   

19.
连铸坯内部中心缩松、缩孔是影响铸坯内部质量的主要缺陷之一.综合运用凝固理论、数值模拟、实验研究、数学推导等手段,提出了描述连铸坯中缩缺陷形成可能性大小的连铸坯中缩敏感系数,并以中缩敏感系数为桥梁,建立了工艺因素与中缩缺陷的关系.结果表明,二冷水是形成连铸坯中缩缺陷的主要因素;随着过热度的增加,连铸坯愈易形成中心缩孔、缩松缺陷;一冷水量对中缩敏感系数的影响较小.该判据用于连铸过程控制可得到较高质量连铸坯。  相似文献   

20.
连铸板坯三角区裂纹的影响因素   总被引:3,自引:0,他引:3  
通过对连铸坯硫印数据库的分析,得到了普碳钢连铸板坯三角区裂纹的影响因素.结果表明,三角区裂纹随着S含量、过热度、拉速和铸坯断面宽度的增加而越来越严重.以此为基础,提出了生产过程中控制三角区裂纹的原则.C含量控制为0.13%;[Mn]/[S]>25,过热度小于25℃,拉速低于1.30m/min,浇铸宽断面铸坯时应加强铸坯窄边的冷却强度,保证良好的铸机设备精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号