首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
大跨屋盖结构荷载风振系数研究   总被引:1,自引:1,他引:0  
以株洲体育中心大跨屋盖为背景,基于刚性模型测压试验的脉动风荷载时程,通过有限元方法在时域内对大跨屋盖结构进行分析,研究不同情况下结构的荷载风振系数和位移风振系数及其变化规律.研究表明:在同一风向角下,大跨屋盖结构的荷载风振系数对位置变化较敏感,偏于安全可以取荷载风振系数较大值,同时屋盖悬挑前缘节点荷载风振系数值较大.  相似文献   

2.
单向张弦梁结构风振系数的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对大跨网架屋盖风致振动问题,采用时程分析方法,在有限元建模的基础上,采用改进的线性回归滤波器法进行脉动风荷载模拟,应用所得的数据,对广州国际会展中心单向空问张弦梁屋盖结构的位移风振系数和内力风振系数进行了研究,得到了一些张弦梁结构位移风振系数和内力风振系数的变化规律.  相似文献   

3.
为研究大跨度薄壳屋盖结构屋盖厚度与风振系数关系问题,首先建立了时域内大跨度薄壳屋盖结构空间三维风振分析模型.然后通过FORTRAN软件平台编制基于谐波叠加法的脉动风载荷程序.最后采用ANSYS瞬态动力计算得到屋盖结构的风振系数值,并分析出该类屋盖结构的风振系数与屋盖厚度之间的变化趋势.结果表明,谐波叠加法是模拟风荷载的有效方法,大跨度屋盖结构的位移风振系数值随厚度的减小而增大,其中跨中部位为受风荷载影响最为显著.数值算例验证了本文方法的正确性与有效性,为屋盖结构的抗风设计提供理论依据和工程参考意义.  相似文献   

4.
张增军 《河南科学》2010,28(7):857-859
以株洲体育中心大跨屋盖结构为背景,采用CFD数值模拟方法,模拟了大跨屋盖表面风荷载,并与大跨屋盖结构风振时程响应进行了分析比较.结果表明:采用CFD方法模拟的大跨屋盖结构表面平均风荷载与风洞试验结果比较接近,说明该法是比较精确的,所提供的体育馆及游泳馆屋面的体形系数可以提供为结构设计参考.  相似文献   

5.
在考虑了风向角和水平脉动风速谱对结构响应计算结果影响的前提下,采用完全二次型组合法(CQC法)对实际大跨弦支穹顶屋盖结构进行了风振响应的频域分析,得到了不同风向角下该弦支穹顶屋盖结构的风振系数,分析了参振模态数目对结构响应计算结果的影响,并将其他4种脉动风速谱与常用的Daveport谱的风振响应计算结果进行了对比.分析结果表明:结构不同区域的最敏感风向角不同,结构中心部位对45°风向角最为敏感,除中心和悬挑部位以外的其他部位对0°风向角最为敏感;所有区域对90°风向角最不敏感;结构的内力风振系数总体上较位移风振系数分布均匀;参振模态数对该实际结构响应计算结果的影响较为明显,因此建议选取的参振模态数不小于100.另外,Harris谱不适合用于该结构风振响应的频域分析.  相似文献   

6.
为了研究外部平台宽度对大跨屋盖风荷载的影响,在B类地貌中对无平台和5个典型平台宽度下的刚性模型进行风洞测压试验,得到了各工况下的屋盖表面平均风压系数和脉动风压系数.研究表明:外部平台增大了大跨结构屋盖的平均风荷载.随着平台宽度的增大,屋盖的平均风荷载先增大后减小.平台宽度12m时最不利,其最大增幅达到33%.平台宽度20m时增幅达到20%;外部平台增大了大跨结构屋盖的脉动风荷载,平台宽度12m时最不利,其增幅达到11%.平台宽度20m时,增幅为8%,其余平台宽度下的增幅基本在5%以内.屋盖背风面边缘的脉动风荷载随着平台宽度的增加而减小,平台宽度20m时可达19%.  相似文献   

7.
大跨屋盖结构风致振动的时程分析方法研究   总被引:2,自引:2,他引:0  
以株洲体育中心大跨屋盖为背景,基于刚性模型测压试验的脉动风荷载时程,以大型通用有限元分析软件ANSYS为平台,采用编程和软件接口,进行了大跨屋盖结构风振响应时程分析计算.研究表明:风洞试验所得的脉动风荷载时程数据,可直接反映出大跨屋盖结构响应的时程,其结果是可行的、有效的,同时精确的时程分析还可以作为其它计算方法的比较依据.  相似文献   

8.
钢结构屋盖风振计算的软件实现   总被引:1,自引:0,他引:1  
钢结构屋盖的荷载风振系数和风压计算具有庞大的工作量.综合考虑水平风和竖向风的作用,应用频域法对屋盖结构风振特性进行了分析,编制了可以与结构有限元计算软件衔接的考虑多阶模态组合的风振风压计算软件.经实例分析验证,大大提高了设计的效率和精度,效果良好.  相似文献   

9.
高阶模态的贡献在大跨屋盖结构风振响应分析中不能忽略.从模态空间分布和风荷载空间分布相关性强弱与模态对结构响应贡献程度的相互关系出发,提出了通过低阶主要贡献模态间接寻找风荷载强相关高阶模态的思想.在此基础上,通过对高阶模态响应方差矩阵的简化处理得到其等效矩阵.根据等效矩阵中对角线元素构造了高阶模态的模态参与系数,实现对高阶主导模态的识别,有效考虑了高阶模态的贡献.最后,通过对2008年北京奥运会网球中心屋盖结构的风振响应分析对所提出方法的有效性进行了验证.  相似文献   

10.
拱型波纹钢屋盖结构自重轻,在风荷载作用下结构的动力响应较为显著,在设计中应给予足够重视.利用ANSYS有限元软件中的壳单元Shell63模拟拱型波纹钢屋盖结构,研究了结构的自振频率和振型,并对结构在脉动风荷载作用下的性能进行了随机振动分析.研究成果不仅验证了脉动风荷载对这种结构是一种非常不利的荷载形式,而且给出了这种结构风振系数的建议取值.  相似文献   

11.
为了明确变截面圆柱壳钢塔的风振响应规律,基于流固耦合理论建立有限元计算模型,采用自回归模型(autoregressive model, AR)法对不同重现期基本风压对应的脉动风速进行了模拟,成功利用数值风洞方法计算了变截面圆柱壳钢塔在脉动风作用下的动力响应,并通过现场风振监测对数值结果的可靠性进行了验证。结果表明:在脉动风作用下,位移响应幅值沿着高度方向逐渐增大,风速越大,结构的位移响应越大,其中50年与100年重现期风速作用下结构响应差别较小,总体上没有超过结构的位移限值。应力沿高度方向逐渐减小,且在变截面位置存在应力突变的现象。风速越大,应力越大,沿着高度方向应力的差别越来越小,其中50年与100年重现期风速作用下超过脱硫塔在工作温度下的材料许用应力值(113 MPa)。因此,对于该类钢塔的抗风性能评估,底部和变截面处以应力控制为主,顶部以位移控制为主。  相似文献   

12.
采用谐波叠加法模拟风速时程,将风速时程转换为风荷载时程施于漏斗形膜结构,分析膜结构风振响应,获得结构各区块风致动力放大系数.计算表明:漏斗形敞开式膜结构各节点位移响应较为稳定且具有周期性,速度响应曲线和加速度响应曲线均较稳定;结构表面不同部位的风振响应差别较大,迎风面的风致动力放大系数较高,背风面风致动力放大系数平缓.  相似文献   

13.
本文以气承式半圆柱形气膜结构为研究对象,通过数值计算分析的手段,研究了气膜结构在风场流固耦合作用下的影响。其中,选用基于雷诺平均法的RNG k-ε 两方程涡粘模型进行风场模拟,采用弱流固耦合分析方法模拟流固耦合风荷载效应。根据0°和30°两种风向角度,在风荷载对结构的静力工况和考虑流固耦合作用工况下,讨论研究对象处于12m/s、15m/s、18m/s不同外界风速及200Pa、230Pa、260Pa不同空气内压条件下的应力值和位移值,分析气膜结构的流固耦合效应的作用机制和影响系数。结果表明,考虑流固耦合时,气膜的位移和应力最大值要高于静力工况,得到结构流固耦合作用相比于静力工况对气膜位移、应力数值的放大系数;且流固耦合作用对气膜位移的影响系数均随内压和风速呈负相关性,而0°风向角时,应力影响系数随气膜内压与风速呈正相关性,30°风向角时,与之相反。  相似文献   

14.
研究了自立状态钢桥塔与塔吊组成的联合体系的抖振性能及塔吊对钢桥塔抖振响应的影响.通过钢桥塔与塔吊共同作用的联合气弹模型风洞试验与自立状态桥塔气弹模型风洞试验,识别出了两种体系的模态参数并获得了不同风速及不同风偏角下两种体系的抖振响应,对风速与风偏角的影响规律进行了总结与比较,对比研究了联合体系中塔吊与桥塔在顺桥向、横桥向的振动响应差异.结果表明,钢桥塔与塔吊的风致抖振位移响应均值可以近似表示为风速的二次函数,位移响应均方差则表现出一定的波动性,塔吊会显著减小钢桥塔抖振位移响应的均值与均方差,钢桥塔与塔吊风致抖振响应存在明显的风偏角效应,塔吊的局部振动效应使得顺桥向塔吊位移相对桥塔位移存在明显的放大效应,而横桥向存在一定的缩小效应.  相似文献   

15.
作用在薄膜结构上的风荷载,除与气流本身的特性有关外,还与结构在风荷载作用下的位移、速度、加速度等有关.薄膜结构与风环境之间存在着较强的流固耦合作用,并且这种耦合作用往往对薄膜结构的振动起控制作用.将两者的耦合作用分为静力耦合作用和动力耦合作用,并主要针对静力耦合作用所涉及的几个因素运用解析公式的说明方法进行了初步分析总结,为进一步的风致动力响应研究和风洞试验研究奠定了理论基础.  相似文献   

16.
对跨路门的主要外载荷进行分析,得出风载荷是跨路门的主要外载,运用有限元法原理,使用ANSYS软件对跨路门在风载作用下进行分析,得出结构位移和应力图,结果表明在风载荷作用下跨路门最大位移发生在纵向。  相似文献   

17.
杭州黄龙体育中心网球馆屋盖属于可开启结构,部分屋盖可沿平行轨道滑动,结合该主体结构的抗风设计要求制作1∶100的刚性模型,进行了结构表面平均风压和脉动风压分布的风洞试验.分析了在不同风向角时关闭和开启屋盖状况下的风压分布.为了便于结构设计,根据实际情况对屋面进行分区并给出相应的分区风压数据,并依据各风向角下的风压分布特征,得出整体结构的抗风设计依据值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号