首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipases are hydrolytic enzymes which break down triacylglycerides into free fatty acids and glycerols. They have been classified as serine hydrolases owing to their inhibition by diethyl p-nitrophenyl phosphate. Lipase activity is greatly increased at the lipid-water interface, a phenomenon known as interfacial activation. X-ray analysis has revealed the atomic structures of two triacylglycerol lipases, unrelated in sequence: the human pancreatic lipase (hPL)4, and an enzyme isolated from the fungus Rhizomucor (formerly Mucor) miehei (RmL). In both enzymes the active centres contain structurally analogous Asp-His-Ser triads (characteristic of serine proteinases), which are buried completely beneath a short helical segment, or 'lid'. Here we present the crystal structure (at 3 A resolution) of a complex of R. miehei lipase with n-hexylphosphonate ethyl ester in which the enzyme's active site is exposed by the movement of the helical lid. This movement also increases the nonpolarity of the surface surrounding the catalytic site. We propose that the structure of the enzyme in this complex is equivalent to the activated state generated by the oil-water interface.  相似文献   

2.
H Takisawa  M Makinose 《Nature》1981,290(5803):271-273
The Ca2+ + Mg2+-activated ATPase of the sarcoplasmic reticulum is responsible for the active Ca2+ transport of this membrane system, the key feature of which is the formation of an energy-rich phosphorylated transport enzyme (EP) and its conversion. To understand the Ca2+-transport mechanism, it is essential to clarify the behaviour of this intermediate in relation to such ligands as ATP, ADP, Mg2+ and, particularly, Ca2+. Recent kinetic studies on the phosphate turnover of this system suggested a relatively slow rate of Ca2+ dissociation from the phosphorylated enzyme, which possibly indicated Ca2+ binding in some occluded form with the intermediate. Here we report direct measurements of the binding and release of Ca2+ during phosphorylation of the sarcoplasmic transport enzyme. The results indicate an occlusion of the Ca2+ binding, accompanying an initial configurational change of the enzyme induced by the energy-rich phosphoryl transfer.  相似文献   

3.
Toyoshima C  Mizutani T 《Nature》2004,430(6999):529-535
P-type ATPases are ATP-powered ion pumps that establish ion concentration gradients across cell and organelle membranes. Here, we describe the crystal structure of the Ca2+ pump of skeletal muscle sarcoplasmic reticulum, a representative member of the P-type ATPase superfamily, with an ATP analogue, a Mg2+ and two Ca2+ ions in the respective binding sites. In this state, the ATP analogue reorganizes the three cytoplasmic domains (A, N and P), which are widely separated without nucleotide, by directly bridging the N and P domains. The structure of the P-domain itself is altered by the binding of the ATP analogue and Mg2+. As a result, the A-domain is tilted so that one of the transmembrane helices moves to lock the cytoplasmic gate of the transmembrane Ca2+-binding sites. This appears to be the mechanism for occluding the bound Ca2+ ions, before releasing them into the lumen of the sarcoplasmic reticulum.  相似文献   

4.
Schumacher MA  Rivard AF  Bächinger HP  Adelman JP 《Nature》2001,410(6832):1120-1124
Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. Here we report the 1.60 A crystal structure of the SK channel CaMBD/Ca2+/CaM complex. The CaMBD forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. As only the CaM N-lobe has bound Ca2+, the structure provides a view of both calcium-dependent and -independent CaM/protein interactions. Together with biochemical data, the structure suggests a possible gating mechanism for the SK channel.  相似文献   

5.
The three-domain structure of porphobilinogen deaminase, a key enzyme in the biosynthetic pathway of tetrapyrroles, has been defined by X-ray analysis at 1.9 A resolution. Two of the domains structurally resemble the transferrins and periplasmic binding proteins. The dipyrromethane cofactor is covalently linked to domain 3 but is bound by extensive salt-bridges and hydrogen-bonds within the cleft between domains 1 and 2, at a position corresponding to the binding sites for small-molecule ligands in the analogous proteins. The X-ray structure and results from site-directed mutagenesis provide evidence for a single catalytic site. Interdomain flexibility may aid elongation of the polypyrrole product in the active-site cleft of the enzyme.  相似文献   

6.
Lipases belong to a class of esterases whose activity on triglycerides is greatly enhanced at lipid-water interfaces. This phenomenon, called interfacial activation, has a structural explanation: a hydrophobic lid, which at rest covers the catalytic site, is displaced on substrate or inhibitor binding and probably interacts with the lipid matrix. Fusarium solani pisi cutinase belongs to a group of homologous enzymes of relative molecular mass 22-25K (ref. 7) capable of degrading cutin, the insoluble lipid-polyester matrix covering the surface of plants, and hydrolysing triglycerides. Cutinases differ from classical lipases in that they do not exhibit interfacial activation; they are active on soluble as well as on emulsified triglycerides. Cutinases therefore establish a bridge between esterases and lipases. We report here the three-dimensional structure of a recombinant cutinase from F. solani pisi, expressed in Escherichia coli. Cutinase is an alpha-beta protein; the active site is composed of the triad Ser 120, His 188 and Asp 175. Unlike other lipases, the catalytic serine is not buried under surface loops, but is accessible to solvent. This could explain why cutinase does not display interfacial activation.  相似文献   

7.
Crystallographic studies on the activity of glycogen phosphorylase b   总被引:8,自引:0,他引:8  
High resolution studies on the crystal structure of glycogen phosphorylase b have identified the catalytic site to which the substrate glucose-1-phosphate binds strongly with some local conformational changes. The site is situated 8 A (phosphate-to-phosphate distance) from pyridoxal phosphate, an essential cofactor of all glycogen phosphorylases. The catalytic site is 33 A from the site in the N-terminal portion of the molecule to which adenine nucleotides bind. In contrast to phosphorylase a (the active form of the enzyme which is phosphorylated at Ser 14), the positions of the first 19 residues of phosphorylase b are not well defined.  相似文献   

8.
钙调神经磷酸酶是一种依赖Ca^2 -CaM的磷蛋白磷酸酶。主要存在于脑组织神经元中,由催化亚基A和调节亚基B1:1组成。钙调神经磷酸酶是一个侈底物的磷蛋白磷酸酶。它的活性还受到Ni^2 和Mn^2 等金属离子的调节。  相似文献   

9.
Hattori M  Gouaux E 《Nature》2012,485(7397):207-212
P2X receptors are trimeric ATP-activated ion channels permeable to Na+, K+ and Ca2+. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body β-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.  相似文献   

10.
钼搀杂TiO2光催化活性的研究   总被引:12,自引:0,他引:12  
用溶胶-凝胶法制备了一系列不同钼搀杂量的TiO2光催化剂,以甲基橙降解为探针反应,结果表明:搀入少量的钼,可显示提高TiO2的光催化活性,钼搀杂质量分数为0.5%-1.5%时,光催化降解效果最好;钼的搀杂质量超过2%,光催化活性逐渐降低。以Raman光谱、紫外反射谱、X线衍射等方法研究了TiO2的微观结构,结果表明:少量钼的搀杂,钼离子进入TiO2的晶格,Mo^6 成为电子授体,提高了TiO2的光催化活性;但钼搀杂量增加,MoO3晶相在TiO2表面形成,两种氧化物间有可能形成异质结,降低了催化剂的光催化活性。  相似文献   

11.
用于细胞内自由[Ca2+]生理作用规律研究的新强萤光试剂Fura-2AM已由十七步合成成功。与过去广泛使用的该类试剂相比,其萤光强度高几十倍,对[Ca2+]亲和力稍弱,对镁和其它二价离子的选择性更好,特别是结合[Ca2+]后波长发生移动。这些优点使它成为目前最重要的特别是测定单细胞中[Ca2+]的萤光试剂之一。  相似文献   

12.
The APOBEC family members are involved in diverse biological functions. APOBEC3G restricts the replication of human immunodeficiency virus (HIV), hepatitis B virus and retroelements by cytidine deamination on single-stranded DNA or by RNA binding. Here we report the high-resolution crystal structure of the carboxy-terminal deaminase domain of APOBEC3G (APOBEC3G-CD2) purified from Escherichia coli. The APOBEC3G-CD2 structure has a five-stranded beta-sheet core that is common to all known deaminase structures and closely resembles the structure of another APOBEC protein, APOBEC2 (ref. 5). A comparison of APOBEC3G-CD2 with other deaminase structures shows a structural conservation of the active-site loops that are directly involved in substrate binding. In the X-ray structure, these APOBEC3G active-site loops form a continuous 'substrate groove' around the active centre. The orientation of this putative substrate groove differs markedly (by 90 degrees) from the groove predicted by the NMR structure. We have introduced mutations around the groove, and have identified residues involved in substrate specificity, single-stranded DNA binding and deaminase activity. These results provide a basis for understanding the underlying mechanisms of substrate specificity for the APOBEC family.  相似文献   

13.
H Brandstetter  J S Kim  M Groll  R Huber 《Nature》2001,414(6862):466-470
The degradation of cytosolic proteins is carried out predominantly by the proteasome, which generates peptides of 7-9 amino acids long. These products need further processing. Recently, a proteolytic system was identified in the model organism Thermoplasma acidophilum that performs this processing. The hexameric core protein of this modular system, referred to as tricorn protease, is a 720K protease that is able to assemble further into a giant icosahedral capsid, as determined by electron microscopy. Here, we present the crystal structure of the tricorn protease at 2.0 A resolution. The structure reveals a complex mosaic protein whereby five domains combine to form one of six subunits, which further assemble to form the 3-2-symmetric core protein. The structure shows how the individual domains coordinate the specific steps of substrate processing, including channelling of the substrate to, and the product from, the catalytic site. Moreover, the structure shows how accessory protein components might contribute to an even more complex protein machinery that efficiently collects the tricorn-released products.  相似文献   

14.
琥珀酸半醛还原酶的抑制剂可作为缓解琥珀酸半醛脱氢酶缺陷病症状的潜在药物.酶抑制剂的研发要以酶的动力学性质为基础,但琥珀酸半醛还原酶的稳态动力学性质还不清楚.本文通过对琥珀酸半醛还原酶AKR7A5稳态动力学性质的分析,判断AKR7A5是按照有序的三元复合物反应机理催化反应;在此基础上,推导出琥珀酸半醛发生底物抑制是由于错误地与AKR7A5:NADP+二元复合物结合;底物的结构类似物琥珀酸体现出反竞争抑制剂的特点,只能与AKR7A5:NADP+二元复合物相互作用,暗示只有通过抑制剂、酶、NADP+复合物的方向入手,才能获得反竞争抑制剂与AKR7A5的复合物晶体结构.  相似文献   

15.
Trotta CR  Paushkin SV  Patel M  Li H  Peltz SW 《Nature》2006,441(7091):375-377
Splicing is required for the removal of introns from a subset of transfer RNAs in all eukaryotic organisms. The first step of splicing, intron recognition and cleavage, is performed by the tRNA-splicing endonuclease, a tetrameric enzyme composed of the protein subunits Sen54, Sen2, Sen34 and Sen15. It has previously been demonstrated that the active sites for cleavage at the 5' and 3' splice sites of precursor tRNA are contained within Sen2 and Sen34, respectively. A recent structure of an archaeal endonuclease complexed with a bulge-helix-bulge RNA has led to the unexpected hypothesis that catalysis requires a critical 'cation-pi sandwich' composed of two arginine residues that serve to position the RNA substrate within the active site. This motif is derived from a cross-subunit interaction between the two catalytic subunits. Here we test the role of this interaction within the eukaryotic endonuclease and show that catalysis at the 5' splice site requires the conserved cation-pi sandwich derived from the Sen34 subunit in addition to the catalytic triad of Sen2. The catalysis of pre-tRNA by the eukaryotic tRNA-splicing endonuclease therefore requires a previously unrecognized composite active site.  相似文献   

16.
The allosteric transition of glycogen phosphorylase   总被引:18,自引:0,他引:18  
D Barford  L N Johnson 《Nature》1989,340(6235):609-616
The crystal structure of R-state glycogen phosphorylase b has been determined at 2.9 A resolution. A comparison of T-state and R-state structures of the enzyme explains its cooperative behaviour on ligand binding and the allosteric regulation of its activity. Communication between catalytic sites of the dimer is provided by a change in packing geometry of two helices linking each site with the subunit interface. Activation by AMP or by phosphorylation results in a quaternary conformational change that switches these two helices into the R-state conformation.  相似文献   

17.
The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The beta- and gamma-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices alphaM7/alphaM10 and alphaM9, respectively. The gamma-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.  相似文献   

18.
J D Schrag  Y G Li  S Wu  M Cygler 《Nature》1991,351(6329):761-764
The Ser-His-Asp triad is a well known structural feature of the serine proteases. It has also been directly observed in the catalytic sites of two lipases, whose high-resolution three-dimensional structures have been determined 1,2. Lipases show a wide variety of sizes, substrate and positional specificities, and catalytic rates 3. They achieve maximal catalytic rates at oil-water interfaces. The fungus Geotrichum candidum produces several different forms of lipases, two of which have been purified to homogeneity 4,5. Two lipase genes have been identified, cloned and sequenced 6,7. Both code for proteins of 544 amino acids with a total relative molecular mass of about 60,000 (Mr 60K). The two forms are 86% identical. Their isoelectric points differ slightly, being between 4.3 and 4.6. About 7% of the total Mr is carbohydrate. Until now, only a low resolution structure of GCL has been reported 8, but no high resolution structure has followed. We now report the three-dimensional structure of a lipase from G. candidum (GCL) at 2.2 A resolution. Unlike the other lipases and serine proteases, the catalytic triad of GCL is Ser-His-Glu, with glutamic acid replacing the usual aspartate. Although the sequence similarity with the other two lipases is limited to the region near the active-site serine, there is some similarity in their three-dimensional structures. The GCL is also an alpha/beta protein with a central mixed beta sheet whose topology is similar to that of the N-terminal domain of human pancreatic lipase. As in the other lipases 1,2, the catalytic site is buried under surface loops. Sequence comparisons with proteins from the cholinesterase family suggest that they also contain the Ser-His-Glu triad.  相似文献   

19.
泸州市降水化学组成综合分析   总被引:1,自引:0,他引:1  
对泸州市2006~2007年降水中阴离子和阳离子监测结果进行了综合分析,降水离子组分当量浓度均值的关系是,SO42->NH4+>Ca2+>NO3->H+>Mg2+>Cl->F->K+>Na+.相关性分析结果表明,除了H+以外,其他各种离子之间均具有显著的相关性.因子分析表明,降水酸度是各离子组成综合作用的结果,并初步推断泸州市降水化学组成的来源.  相似文献   

20.
Calcium is transported across the surface membrane of both nerve and muscle by a Na+-dependent mechanism, usually termed the Na:Ca exchange. It is well established from experiments on rod outer segments that one net positive charge enters the cell for every Ca2+ ion extruded by the exchange, which is generally interpreted to imply an exchange stoichiometry of 3 Na+:1 Ca2+. We have measured the currents associated with the operation of the exchange in both forward and reversed modes in isolated rod outer segments and we find that the reversed mode, in which Ca2+ enters the cell in exchange for Na+, depends strongly on the presence of external K+. The ability of changes in external K+ concentration ([K+]o) to perturb the equilibrium level of [Ca2+]i indicates that K+ is co-transported with calcium. From an examination of the relative changes of [Ca2+]o, [Na+]o, [K+]o and membrane potential required to maintain the exchange at equilibrium, we conclude that the exchange stoichiometry is 4 Na+:1 Ca2+, 1 K+ and we propose that the exchange should be renamed the Na:Ca, K exchange. Harnessing the outward K+ gradient should allow the exchange to maintain a Ca2+ efflux down to levels of internal [Ca2+] that are considerably lower than would be possible with a 3 Na+:1 Ca2+ exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号