首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
螺旋桨非定常性能计算的升力面方法   总被引:4,自引:0,他引:4  
本文利用非定常数值升力面方法计算了运转于非均匀流场中的螺旋桨性能,该方法建立在作者提出的新的定常螺旋桨尾涡模型的基础上,在用圆锥螺旋面模拟的过渡区尾涡片中,加入了泄出涡以反映非定常特性.数值计算的升力面方法采用离散的涡、源奇点系,并编制了相应的非定常性能计算的计算机程序.最后,对14届ITTC 螺旋桨委员会提供的实例以及其他例子作了比较计算,结果表明,本法是可行的.  相似文献   

2.
本文通过对螺旋桨升力面的涡系模型的理论分析,引用模式函数及变密度自由涡 索的概念建立了模式自由涡密度的计算模型,并导出了与其相应的全部模式涡系的分 布密度及诱导速度公式。这样,就完满地解决了由于采用 Birnbaum级数而带来的 奇点积分问题,并大大地简化了计算.  相似文献   

3.
本文提出了用数值升力面理论求解三维空泡螺旋桨问题的准定常方法.表征螺旋桨负荷、厚度和空泡的奇点系及满足边界条件的控制点均置于拱弧面上。尾涡模型划分为过渡区和远尾流区,过渡区用圆锥螺旋面来模拟尾涡片的变形现象,远尾流区简化为桨叶数的集中等螺距梢涡和一根直线毂涡模型。空泡模型用半闭式.计算结果与实验值吻合良好。  相似文献   

4.
导管螺旋桨定常性能理论计算   总被引:11,自引:1,他引:11  
建立了计算导管螺旋桨在均流中的定常水动力性能的数值方法,螺肇桨用涡格法,导管用面元法分别计算,两者的相互影响则通过迭代计算加以考虑,为了减少计量量,螺旋桨对导管的诱导速率周向平均值,从而使导管周围的非定常流动简化为定常对称流动,应用本法地JD简易导管桨系列进行了计算,数值结果试验数据吻合良好。  相似文献   

5.
RANS方法和升力面理论预报螺旋桨敞水性能比较研究   总被引:1,自引:0,他引:1  
利用CFX软件,通过求解雷诺平均的Navier-Stokes(简称RANS)方程和使用标准的两方程k-ε湍流模型对MAU4-50螺旋桨进行了敞水性能预报,同时应用基于势流理论的升力面方法加粘性修正对同一螺旋桨进行了计算.为了评价两种方法的预报精度,将计算结果与试验值进行了对比.对于推力系数,RANS和升力面理论的平均误差分别为3.8%和12.7%;对于扭矩系数,RANS和升力面理论的平均误差分别为6.2%和7.4%.RANS和升力面理论计算得到的敞水效率的平均误差分别为-3.94%和3.69%.结果表明,RANS的计算精度高于升力面理论,但前者的计算成本高.  相似文献   

6.
7.
吊舱对螺旋桨水动力性能的影响   总被引:24,自引:0,他引:24  
基于单桨式吊舱推进器定常水动力性能的理论计算方法及试验,探讨了吊舱对螺旋桨水动力性能的影响。性能理论计算中螺旋桨采用升力面理论涡格法,吊舱采用面元法,对螺旋桨与吊舱的相互影响进行了时间平均及迭代处理。通过计算分析了吊舱对桨叶载荷分布的影响,以及吊舱引起的伴流分布特性。  相似文献   

8.
同时采用Lerbs非最优螺旋桨理论和Epps最佳环量分布理论,将螺旋桨升力线方法由初始设计应用扩展到敝水性能预报,对DTMB 4119、4381、4382和4497这4个螺旋桨的敞水性能曲线进行了预报分析.针对升力线方法在中度负载区间的适用限制和无法在黏性流场中考虑桨叶空化性能的缺陷,进一步将Epps方法与雷诺时均(RANS)模拟相结合,可明显提高低、高负载区间的敞水性能预报精度.Epps方法预报精度要高于Lerbs方法,能够满足工程初始分析需求.随着远离设计工况点(低、高进速系数)其预报误差变大,桨叶侧斜程度和纵倾存在也会增大预报误差.RANS模拟时桨叶切面型值由升力线方法提供,桨叶几何和六面体网格划分均采用程式化操作实现.在分析网格因素影响后,所得推力和力矩系数以及压力系数分布均匀与实验值吻合较好.在RANS模拟中加入混合物均相流空化模型后,可定量得出桨叶梢涡涡束在一定距离内的螺旋轨迹.结合桨叶最大负载截面的空化斗性能和梢涡涡束最小压力点幅值,可相对判定桨叶空化性能.构建了基于水动力性能评价的螺旋桨参数化设计和非空化与空化性能预报的数值平台.
  相似文献   

9.
船用螺旋桨理论及其应用研究进展   总被引:5,自引:0,他引:5  
论述了船用螺旋桨理论设计与计算研究的进展;讨论了升力面理论方法中尾涡模式函数,面元法中的随边库塔条件的数值处理,以及纳维-斯托克斯方程方法中流域计算匹配的数值方法;给出了相关理论方法在螺旋桨水动力性能黏性修正、翼剖面二相流水动力计算和新型螺旋桨叶剖面设计开发研究中的应用实例.应用计算表明,所提供的数值方法是有效的.有关螺旋桨水动力性能的黏性修正、叶剖面二相流计算和桨叶叶剖面设计等方法,对于工程应用具有参考价值.  相似文献   

10.
非线性涡格法预报桨后舵附推力鳍水动力性能   总被引:2,自引:0,他引:2  
对螺旋桨与舵附推力鳍分别采用升力面法和非线性涡格法计算.螺旋桨、舵附推力鳍两者之间的相互干扰采用迭代计算.数值计算过程中考虑了推力鳍端部分离涡的影响,提高了理论预报的准确性.螺旋桨尾流区分为过渡区和远尾流区.过渡区长度取3.0D,以使舵附推力鳍完全处于螺旋桨尾流的过渡区内,过渡区采用圆锥螺旋面来模拟涡片的变形现象.对影响推力鳍助推效率的几个主要参数进行了变尺度研究.并将结果与前人的计算结果进行了对比,计算结果显示螺旋桨后的舵附推力鳍助推效率随着安装角的改变而显著变化.存在最佳安装角,大约为5°,离开这个最佳安装角,推力鳍的助推效率将下降;推力鳍的展长与螺旋桨半径之比在0.9左右时推力鳍的助推效率最高;螺旋桨进速系数越小,推力鳍的助推效率越大.  相似文献   

11.
用非定常非线性涡格法计算螺旋桨尾流场预估非定常性能,并进一步计算了瞬变工况下螺钉性能,对DTNSRDC4381和4383桨的尾流场进行了校核计算,取得了理想的结果;对ITTC建议的轴承力校核计算的螺旋桨,在给定的伴流场条件下计算其非定常性能,与试验结果和其他的理论方法比较,结果令人满意,最后计算了DTNSRDC4118桨在变工况下性能变化过程,显示了该方法用于螺肇钉性能预估的前景。  相似文献   

12.
为了提升高速航空螺旋桨的气动性能,通过计算流体力学(computational fluid dynamics, CFD)方法研究了平凸翼型NACA4412、超临界翼型RAE2822和高雷诺数薄翼型NACA65206在不同马赫数Ma、不同攻角下的升阻比变化规律,以及翼型流场的马赫数等值线分布等。通过翼型的升阻比特性研究,选用NACA65206翼型设计了一款高速航空螺旋桨,并进行了螺旋桨流场的CFD仿真和气动性能计算。结果表明:随着马赫数从0.5提高到0.9,NACA65206翼型具有更好的升阻比特性,并且失速特性不断改善;采用NACA65206翼型设计的螺旋桨在0.6飞行马赫数下,推进效率高于80%,在0.7飞行马赫数下,推进效率高于75%,说明了使用薄翼型结合大后掠角度设计的高速航空螺旋桨具有较好的推进效率。  相似文献   

13.
基于体积力法的船体自航性能数值预报   总被引:2,自引:0,他引:2  
为实现船舶自航性能的快速预报,应用计算流体力学(CFD)方法,采用一种便捷的描述型体积力模型替代螺旋桨的作用,分别在无舵实船自航点和有舵模型自航点2种条件下对MOERI(Korea Research Institute for Ships and Ocean Engineering)集装箱船(KCS)的黏性自由面流场进行了数值模拟.依据等推力法、敞水计算和螺旋桨敞水曲线等,计算船体自航性能相关参数.计算结果与试验结果吻合良好.研究结果表明,使用描述型体积力法可以便捷而较为准确地预报船体自航性能.  相似文献   

14.
螺旋桨初生空化湍流的多相流数值模拟   总被引:1,自引:0,他引:1  
摘要:
同时采用修正剪切应力输运(SST)湍流模型和Baseline雷诺应力模型(RSM)求取了E779A螺旋桨在无空化状态和初生空化状态下的梢涡运动轨迹,分析了涡核最小压力系数、湍动能、轴向速度分量和涡核半径沿运动轨迹的变化,并从模拟得到的梢涡卷曲起始和梢涡涡束的角度阐述了梢涡形成机理.空化模型采用改进Sauer模型,考虑了非凝结性气核质量分数、体积分数和气泡初始半径以及湍流脉动的影响,并针对轻度、中度和重度空化面积进行了可信性校验.当空化数σ>初生空化数σi时,叶梢截面压力系数分布相对不再改变的判定准则来确定.涡核中心位于螺旋线垂向截面上最小压力点,涡核边界由湍流涡频率峰值决定.数值模拟结果表明,RSM模拟梢涡路径较修正SST湍流模型稍长、局部梢涡空化范围略大、叶梢最小压力系数和轴向速度分量要小,涡核湍动能分布更为合理.但两者模拟得到的涡核运动轨迹几乎重合,并且初生空化状态下的涡核运动轨迹、最小压力系数和轴向速度分布均与各自无空化状态下非常接近,表明了初生空化状态判定的正确性和改进数值模型对梢涡运动轨迹模拟的适用性.  相似文献   

15.
研究基于升力线和升力面理论的对转桨设计方法,对升力面设计的核心部分--螺距和拱弧面的迭代计算方法进行了改进,建立了一套较为高效、准确的大侧斜对转桨设计程序.设计算例及其数值验证结果表明:改进的设计计算方法不仅提高了计算效率,而且能够有效保证设计结果的光顺性;设计方法具有较好的精度,可应用于大侧斜对转桨的设计.  相似文献   

16.
提出了一种计算带制流板舵在螺旋桨尾流中水动力性能的方法,舵的水动力及周围流场用面元法计算,螺旋桨性能及尾流场通过无限叶数的简易螺旋桨理论来预估,而舵上下制流板的影响则应用升力面的涡格法来计算,舵、制流板、螺旋桨的干扰作用以迭代方法求得,由于采用了面元法,舵的水动力性能及表面压力分布的计算更为精确,文中不对带制流板舵的操纵性能进行计算和研讨,计算结果与实验值比较,吻合程度良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号