首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Announcement.  As decided in July 2005 we continue to publish once a year (in July) the names of the authors and the titles of the two most read (by Internet) Research Papers and Reviews published in Cell. Mol. Life Sci. the previous year. Thus we have the pleasure to provide you with the results of 2005. Research Articles  
1)  Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment
M. Columbaro a, C. Capanni b, E. Mattioli a, G. Novelli c, V. K. Parnaik d, S. Squarzoni b, N. M. Maraldi a, b and G. Lattanzi b
2)  A relevant in vitro rat model for the evaluation of blood-brain barrier translocation of nanoparticles
E. Garcia-Garcia a, S. Gil b, K. Andrieux a, D. Desma?le c, V. Nicolas d, F. Taran e, D. Georgin e, J. P. Andreux b, F. Roux f and P. Couvreur a Reviews  
1)  G-protein signaling: back to the future
C. R. McCudden, M. D. Hains, R. J. Kimple, D. P. Siderovski and F. S. Willard
2)  Hsp70 chaperones: Cellular functions and molecular mechanism
M. P. Mayer and B. Bukau The above cited articles will be immediately freely accessible.  相似文献   

2.
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor of this transport system. Our results indicate the the Na+/K+, pump and Na+/K+ ATPase activity are significantly lower in CH than in PH, although basal ouabain-sensitive (OS) QO2 was negligible in both of these cell preparations. However, OSQO2 was significantly lower in CH than in PH when the Na+/K+ pump was activated using the ionophore nystatin in a Na+-containing medium. These results indicate that the differences in membrane ion transport exist between hepatocytes from different locations of the liver lobule.  相似文献   

3.
Cancer stem cells have been hypothesized to drive the growth and metastasis of tumors. Because they need to be targeted for cancer treatment, they have been isolated from many solid cancers. However, cancer stem cells from primary human gastric cancer tissues have not been isolated as yet. For the isolation, we used two cell surface markers: the epithelial cell adhesion molecule (EpCAM) and CD44. When analyzed by flow cytometry, the EpCAM+/CD44+ population accounts for 4.5% of tumor cells. EpCAM+/CD44+ gastric cancer cells formed tumors in immunocompromised mice; however, EpCAM?/CD44?, EpCAM+/CD44? and EpCAM?/CD44+ cells failed to do so. Xenografts of EpCAM+/CD44+ gastric cancer cells maintained a differentiated phenotype and reproduced the morphological and phenotypical heterogeneity of the original gastric tumor tissues. The tumorigenic subpopulation was serially passaged for several generations without significant phenotypic alterations. Moreover, EpCAM+/CD44+, but not EpCAM?/CD44?, EpCAM+/CD44? or EpCAM?/CD44+ cells grew exponentially in vitro as cancer spheres in serum-free medium, maintaining the tumorigenicity. Interestingly, a single cancer stem cell generated a cancer sphere that contained various differentiated cells, supporting multi-potency and self-renewal of a cancer stem cell. EpCAM+/CD44+ cells had greater resistance to anti-cancer drugs than other subpopulation cells. The above in vivo and in vitro results suggest that cancer stem cells, which are enriched in the EpCAM+/CD44+ subpopulation of gastric cancer cells, provide an ideal model system for cancer stem cell research.  相似文献   

4.
The mechanisms of HCO 3 and Cl transport across basolateral membranes from rat ileum were investigated in isolated vesicles by means of uptake experiments. Neither Cl/HCO 3 exchanger nor Na+–(HCO 3 )n cotransport seem to be present in ileal basolateral membranes. Moreover Cl uptake is unaffected bycis Na+ and/or K+ gradients, indicating the absence of Na+–Cl, K+–Cl and Na+–K+–2Cl symport activity. An electrically conductive pathway seems to be responsible for both HCO 3 and Cl fluxes. Evidence is also given for the presence of a Na+/H+ exchanger at the basolateral pole of ileal enterocytes.  相似文献   

5.
Treatment with the co-transport inhibitor, furosemide decreased36Cl flux across perfused Malpighian tubules ofLocusta. However, exclusion of36Cl from the bathing medium had not effect on22Na+ flux whereas substitution of bathing medium Na+ by K+ increased36Cl flux. Diuretic extract of corpora cardiaca increased22Na+ (by 106%) and36Cl (by 335%) fluxes differentially.  相似文献   

6.
Summary ATPases of the amine storing granules from bovine adrenal medulla and splenic nerves are inhibited by Tl+++ 3×10–5 and 5×10–6 M, respectively. Tl+ up to 10–3 M is ineffective. By T1+++ in concentrations of 10–4 M or more, proteins are precipitated, so that the enzyme inhibiton by these concentrations is unspecific. If T1+ is oxidized to Tl+++ in the organism, the inhibition of granular ATPase may be responsible for the alterations of the catecholamine metabolism observed in thallium intoxication.  相似文献   

7.
The Na+,K+-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na+ ions out of the cell and of K+ ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na+,K+-ATPase, recent work has suggested additional roles for Na+,K+-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na+,K+-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na+,K+-ATPase as a signal transducer, but also briefly discuss other Na+,K+-ATPase protein–protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.  相似文献   

8.
Summary In isolated mitochondria of heart muscle from rabbits and oxen there is, under suitable conditions, an accumulation of Ca++, which is significantly enhanced by elevating the K+/Na+ quotient of the incubation medium. K-strophanthine (10–5–10–7) does not influence the accumulation of Ca++ by the mitochondria of heart muscle. Therefore the intracellular increase in exchangeable Ca++ observed after digitalis-glycosides could be explained by a decrease of the intracellular K+/Na+ quotient, which is caused by inhibition of the membrane ATPase and diminishes the capacity for Ca++ accumulation in mitochondria.  相似文献   

9.
Activation of δ-opioid receptors (DOR) attenuates anoxic K+ leakage and protects cortical neurons from anoxic insults by inhibiting Na+ influx. It is unknown, however, which pathway(s) that mediates the Na+ influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na+ influxes mediated by voltage-gated Na+ channels; (2) DOR activation inhibited Na+ influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K+ derangement; and (3) DOR activation had little effect on Na+/Ca2+ exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K+ derangement by restricting Na+ influx mediated by Na+ channels and NMDA receptors, and that non-NMDA receptors and Na+/Ca2+ exchangers, although involved in anoxic K+ derangement in certain degrees, are less likely the targets of DOR signal. Received 26 November 2008; received after revision 26 December 2008; accepted 13 January 2009  相似文献   

10.
Summary The solid phase synthesis of three invertebrate vasopressin-oxytocin homologs: AVP-like factor, F1 1, ([Leu2, Thr4] AVT)2 isolated from subesophageal and thoracic ganglia ofLocusta migratoria 3, Arg-conopressin-S4. ([Ile2, Arg4] AVT), Lys-conopressin-G4 ([Phe2, Arg4] LVT), both isolated from the venom of fish-hunting marine snails of the genusConus and six of their analogues is reported. These analogues are: [Arg4] AVT, [Ile2] AVT, [Leu2] AVT, [Phe2, Arg4] AVT, [Arg4] LVT and [Ile2, Arg4] LVT. All peptides were tested for antidiuretic and vasopressor activities.  相似文献   

11.
Summary Na+, K+-ATPase inhibitors extracted from plasma of healthy human subjects displaced3H-ouabain binding to human erythrocytes and inhibited the Na+ efflux catalyzed by the Na+, K+-pump and unexpectedly the Na+, K+-cotransport system without alteration of the Na+, Na+-exchange or the Na+ passive permeability. This suggests the presence in healthy human plasma of endogenous factors with ouabain-like and furosemide-like activities.Acknowledgments. We are indebted to Dr M. A. Devynck for her advice on chemical measurements and to Dr R. P. Garay for his help with flux measurements  相似文献   

12.
Summary Studies have implicated Ca++ in the actions of ethanol at many biochemical levels. Calcium as a major intracellular messenger in the central nervous system is involved in many processes, including protein phosphorylation enzyme activation and secretion of hormones and neurotransmitters. The control of intracellular calcium, therefore, represents a major step by which neuronal cells regulate their activities. The present review focuses on three primary areas which influence intracellular calcium levels; voltage-dependent Ca++ channels, receptor-mediated inositol phospholipid hydrolysis, and Ca++/Mg++-ATPase, the high affinity membrane Ca++ pump.Current research suggests that a subtype of the voltage-dependent Ca++ channel, the dihydropyridine-sensitive Ca++ channel, is uniquely sensitive to acute and chronic ethanol treatment. Acute exposure inhibits, while chronic ethanol exposure increases45Ca++-influx and [3H]dihydropyridine receptor binding sites. In addition, acute and chronic exposure to ethanol inhibits, then increases Ca++/Mg++-ATPase activity in neuronal membranes. Changes in Ca++ channel and Ca++/Mg++-ATPase activity following chronic ethanol may occur as an adaptation process to increase Ca++ availability for intracellular processes. Since receptor-dependent inositol phospholipid hydrolysis is enhanced after chronic ethanol treatment, subsequent activation of protein kinase-C may also be involved in the adaptation process and may indicate increased coupling for receptor-dependent changes in Ca++/Mg++-ATPase activity.The increased sensitivity of three Ca++-dependent processes suggest that adaptation to chronic ethanol exposure may involve coupling of one or more of these processes to receptor-mediated events.  相似文献   

13.
Beta-carotene 15,15′-monooxygenase 1 knockout (Bcmo1 ?/?) mice accumulate beta-carotene (BC) similarly to humans, whereas wild-type (Bcmo1 +/+) mice efficiently cleave BC. Bcmo1 ?/? mice are therefore suitable to investigate BC-induced alterations in gene expression in lung, assessed by microarray analysis. Bcmo1 ?/? mice receiving control diet had increased expression of inflammatory genes as compared to BC-supplemented Bcmo1 ?/? mice and Bcmo1 +/+ mice that received either control or BC-supplemented diets. Differential gene expression in Bcmo1 ?/? mice was confirmed by real-time quantitative PCR. Histochemical analysis indeed showed an increase in inflammatory cells in lungs of control Bcmo1 ?/? mice. Supported by metabolite and gene-expression data, we hypothesize that the increased inflammatory response is due to an altered BC metabolism, resulting in an increased vitamin A requirement in Bcmo1 ?/? mice. This suggests that effects of BC may depend on inter-individual variations in BC-metabolizing enzymes, such as the frequently occurring human polymorphisms in BCMO1.  相似文献   

14.
Effects of extracellular magnesium ions ([Mg2+]o ) on intracellular free Mg2+ ([Mg2+]i ) and its subcellular distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o , [Mg2+]i in yeast cells was 0.91±0.08 mM. Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.18±0.11 mM). Lowering [Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.93±0.14 mM), at least for periods of up to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained hetero geneous, i.e. where the sub-plasma membrane region >cytoplasm >nucleus. [Mg2+] in all three subcellular compartments increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o . We conclude that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+ rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments. Received 18 April 1996; received after revision 4 July 1996; accepted 26 July 1996  相似文献   

15.
Summary (1 R) [1-3H,2H1] 3-Phenylpropanol, the key intermediate in the synthesis of (4 R) [4-3H,2H1] D, L-homoserine and of the (4 S)-isomer, is obtained from (1 S) [1-2H1] 3-phenylpropanol and (1 RS) [1-3H] ethanol upon incubation with yeast alcohol dehydrogenase and NAD+; under similar conditions 2-phenylethanol undergoes very small exchange with [1-2H2] ethanol.  相似文献   

16.
Summary The activity of hexokinase has been determined in the presence of different metal ions. Besides Mg2+, the ions Co2+, Ni2+, Mn2+, Zn2+, and Cd2+ show remarkable activation. The differences are explained by superposition of an activating and an inhibiting function. The specifity problem is discussed.  相似文献   

17.
Summary Autoradiography showed that labelled polychlorinated biphenyls with chlorine in positions 2, 41, 5 and hydrogen in positions 3, 31, 6, 61 in the molecule are accumulated in the mouse bronchial mucosa. Further testing of this observation showed that 2, 21, 4, 51-tetrachlorbiphenyl-14C, but not biphenyl-14C, was taken up in the bronchi of mice.This investigation was supported by the National Swedish Environment Protection Board.  相似文献   

18.
The lack of Na+,K+-ATPase expression in intercalated cells (IC) is an intriguing condition due to its fundamental role in cellular homeostasis. In order to better understand this question we compared the activities of Na+,K+-ATPase and Na+-ATPase in two MDCK cell clones: the C11, with IC characteristics, and the C7, with principal cells (PC) characteristics. The Na+,K+-ATPase activity found in C11 cells is far lower than in C7 cells and the expression of its β-subunit is similar in both cells. On the other hand, a subset of C11 without α-subunit expression has been found. In C11 cells the Na+-ATPase activity is higher than that of the Na+,K+-ATPase, and it is increased by medium alkalinization, suggesting that it could account for the cellular Na+-homeostasis. Although further studies are necessary for a better understanding of these findings, the presence of Na+-ATPase may explain the adequate survival of cells that lack Na+,K+-ATPase. Received 09 July 2008; received after revision 03 August 2008; accepted 12 August 2008  相似文献   

19.
Summary In the absence of divalent cations, ionophore A23187 supports low rates of monovalent cations loss (Na+>K+) from unilamellar liposomes containing the sulfate salts. Monovalent cation efflux is optimal when a pH gradient (interior alkaline) is applied. The maximum observed rate of 0.56 ngion K+·min–1·nmole–1 A23187 is insufficient to account for the rates of K+ efflux induced by the ionophore in mitochondria (150 ngion K+·min–1·nmole–1 A23187). These studies therefore support the concept that A23187 induces loss of K+ from mitochondria by removal of regulating divalent cations from an endogenous K+/H+ exchanger.These studies were supported in part by United States Public Health Services Grant HL09364.  相似文献   

20.
Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin stimulated (Ca2++Mg2+)ATPase and (Na++K+)ATPase activities in smooth muscle membranes separated by density gradient centrifugation suggests a plasmalemmal distribution of this (Ca2++Mg2+)ATPase. A phosphoprotein intermediate in smooth muscle which strongly resembles the corresponding phosphoprotein in sarcoplasmic reticulum of skeletal muscle may indicate the presence in smooth muscle of a similar type of Ca2+-transport ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号