共查询到17条相似文献,搜索用时 46 毫秒
1.
经60Coγ诱变处理粳稻\"嘉花1号\"得到一个稳定遗传苗期白化致死突变体asl6(albino seedling lethality 6).与野生型(WT)相比,该突变体从发芽出苗起一直表现白化,四叶期逐渐死亡,叶合色素含量几乎没有且没有完整的叶绿体结构.通过qRT-PCR分析发现,与叶绿体发育、叶绿素合成及光合作用相关的基因表达量明显下调.对利用asl6突变体与\"培矮64S\"杂交获得的F2代分离群体进行遗传分析,发现该突变表型受单个隐性核基因控制.利用图位克隆技术将该asl6基因定位于第2号染色体的InDel分子标记ID31982与SSR分子标记MM5712之间约293 kb的区域内.目前,该范围内没有叶色相关基因的报道,可能为一新的调控水稻叶绿体发育的基因. 相似文献
2.
水稻白化突变体alb21生理特性和基因定位 总被引:11,自引:0,他引:11
高等植物叶绿体的正常发育需要叶绿体基因和核基因相互协调,这些基因的突变将导致叶绿体发育的缺陷.通过同位素诱变,获得了1例水稻的白化突变体alb21,其在幼苗时期就表现出白化性状,生长1个月左右逐渐死亡.遗传学分析表明,该突变属于单基因隐性突变;电镜观察表明,突变体细胞内完全丧失了叶绿体结构,只有一些空泡状的结构.突变体中既没有检测出叶绿素a或b,也没有检测出叶绿素合成的前体——原脱植基叶绿素a,说明此突变体的叶绿素合成途径受阻.因此,推测Alb21基因的突变,导致叶绿体发育受阻,叶绿素a或b以及叶绿素合成的前体——原脱植基叶绿素a不能合成.利用本实验室开发的水稻InDel分子标记,将该突变基因定位在第3条染色体上分子标记R3M51—2与R3M52—5之间约1520kb范围内.这些结果为该基因的克隆及叶绿体发育过程中的功能研究奠定了基础. 相似文献
3.
在60Coγ射线辐照的水稻突变体库中,发现了一个以粳稻品种日本晴为遗传背景的幼苗叶色黄化突变体syl11(seedling yellow leaf 11).与野生型相比,突变体幼苗第二和第三叶表现黄色,在其完全展开之前叶片自其顶端开始转绿,长到四叶期其叶色恢复正常;并且该突变体syl11幼苗黄色叶片光合色素含量明显下降.遗传分析表明,该突变体的遗传性状由1对隐性核基因控制.本研究以培矮64S/syl11的F2代突变型植株作为定位群体,应用微卫星(SSR)分子标记以及新发展的InDel分子标记,将基因syl11定位在水稻第11号染色体长臂上的RM26652和处于着丝粒附近的ID11974分子标记之间,其遗传距离分别为0.5 cM和0.7 cM. 相似文献
4.
对粳稻\"嘉花1号\"经~(60)Coγ诱变处理获得的稳定遗传低温敏感叶色突变体tcm11(thermo-sensitive chloroplast mutant 11)进行了表型鉴定与遗传分析.在20℃条件下,该突变体三叶期之前幼苗均表现为黄色,光合色素含量明显下降,叶绿体发育不完整,从第4叶开始逐渐转为浅黄绿色直至最后死亡.而在32℃条件下,其表型与野生型相比没有明显差异,具有低温敏感属性.通过对培矮64S与tcm11杂交的F_2代分离群体进行遗传分析,发现该低温敏感突变体性状是受单个隐性核基因(tcm11)控制,利用图位克隆技术对tcm11进行定位,将其定位在第11号染色体的InDel分子标记ID13252与SSR分子标记MM1361之间一个约1 566 kb的区域内.这也为后续的研究奠定了基础. 相似文献
5.
一个水稻抗纹枯病突变体的遗传分析及其基因的初步定位 总被引:3,自引:0,他引:3
高水平抗纹枯病突变体和高感纹枯病品种蜀恢881杂交构建分离群体,经F2分离世代的遗传分析,抗、感单株比例符合3 1(χc2=0.563,χ12,0.05=3.84),初步确定该突变体对纹枯病的抗性由一对显性主效基因所控制,命名为Rsb-2(t)。利用已合成的530对微卫星引物,对抗纹枯病突变体和蜀恢881进行多态性引物筛选,用多态性引物对上述F2分离群体的全部感病单株和部分抗病单株的DNA进行PCR分析,借助MAPERMAKER/EXP3.0软件,对其微卫星标记实验数据进行连锁分析,将Rsb-2(t)定位于第3染色体的p臂,发现RM218、RM251、RM4321和RM5748与Rsb-2(t)连锁,它们均位于着丝粒端,连锁距离分别为32.1 cM,41.1 cM,42.4 cM和49.7 cM。研究结果为进一步对该基因的精细定位奠定了基础。 相似文献
6.
新的矮秆基因的发掘、研究和利用对水稻育种和植物生长发育机制研究有重要的作用.用60Coγ射线辐照粳稻9522,获得一个能稳定遗传的突变体.该突变体表型为株高较野生型矮,叶片短而微卷.将该突变体与籼稻广陆矮杂交,F2代呈3∶1分离,说明该突变体受隐性单基因控制.通过InDel分子标记对F2代分离群体进行遗传定位,将该基因定位于第6染色体InDel标记OS604附近.随后又发展了多对有多态性的InDel分子标记,将该基因座位精细定位在InDel标记XL6-6和XL6-1之间,AP003490和AP005619上,两个引物之间的物理距离为118 kb.本研究为该克隆基因及其作用机理的探究奠定了基础. 相似文献
7.
对粳稻\"嘉花1号\"经60Coγ诱变处理获得的稳定遗传低温敏感叶色突变体tcd32进行了表型鉴定与遗传分析.在20℃条件下,该突变体表现为白色,光合色素含量明显下降,叶绿体发育不完整,植株最终枯萎死亡;在25℃条件下,三叶期之前幼苗表现为黄色,从第四叶开始逐渐转为黄绿色,光合色素含量也明显下降;而在30℃条件下,其表型与野生型(WT)相比没有明显差异.通过对培矮64S与tcd32杂交的F2代分离群体进行遗传分析,结果表明:该低温敏感叶色突变体性状是受一对隐性核基因(tcd32)控制,利用图位克隆技术将tcd32基因定位在水稻第3染色体上顶端537 kb区域内,发现TCD32是一个新的水稻早期叶绿体发育相关基因. 相似文献
8.
目的 分蘖角作为水稻株型的重要组成部分,其遗传基础复杂,需鉴定更多与分蘖角相关的突变体和基因以进一步解析水稻分蘖角的分子调控机制。方法 通过对贵州地方粳稻品种桥港珍珠米进行60Co辐射诱变后成功获得一份水稻散生突变体,暂命名为sg518(spreading-grown mutant 518),并对其进行表型鉴定、遗传分析、基因定位和候选基因测序验证。结果 (1)田间性状显示,与野生型相比,突变体sg518表现出分蘖角显著增大的散生表型,并伴有一次枝梗数增加、每穗实粒数增加、籽粒变小和千粒重降低;(2)遗传分析表明,该突变体的散生性状受一对隐性核基因控制;(3)精细定位结果显示,目标基因定位于11号染色体长臂RM287与J1标记之间的88.7 kb内;(4)MutMap分析表明,在此区间有1个SNP频率为1的InDel突变且位于LAZY1基因上;(5)对目标基因的PCR扩增与测序结果表明,突变体的LAZY1基因在第3外显子上有1处1 bp的碱基缺失,导致蛋白翻译提前终止,由此推断LAZY1基因为突变体sg518的候选基因。结论 sg518为LAZY1基因的一个新等位突变体,可进一步为研究该基因功能及水稻分蘖角的调控机制提供理论基础。 相似文献
9.
10.
以半无叶类型、普通类型豌豆为试验材料,对小叶突变体基因位置与子叶颜色基因、初花节位基因的遗传距离进行了研究。结果表明:小叶突变体性状是受单基因控制的,呈完全隐性,小叶突变体基因af、子叶颜色基因i、初花前节位lf表现连锁遗传,且位于第一染色体,测得小叶突变体基因af和子叶颜色基因i之间的遗传距离为6.71个遗传单位,小叶突变体af基因和初花节位基因lf的遗传距离为37.73个遗传单位,三对基因之间的顺序为lf,af,i。 相似文献
11.
水稻叶色突变研究进展 总被引:1,自引:0,他引:1
水稻叶色突变体表型变异明显,易于观察、利用和鉴别。叶色相关基因在水稻叶绿体形成与发育、叶绿素代谢等过程中,具有极其重要的作用。目前,在水稻所有的染色体中都发现了控制叶色相关的基因。文章从叶绿素合成、降解、水稻叶色突变表型以及叶色变化的分子机制等方面阐述了水稻叶色突变形成的机制。 相似文献
12.
Fangming Zhao Yong Zhang Yanru Wu Tongming Wang Ling Ma Zhenglin Yang Xia Wei Xianchun Sang Yinghua Ling Nan Wang Changwei Zhang Guanghua He 《科学通报(英文版)》2014,59(9):840-848
The shape and color of rice leaves are impor- tant agronomic traits that directly influence the proportion of sunlight energy utilization and ultimately affect the yield and quality. A new mutant exhibiting stable inheritance was identified as derived from ethyl methane sulfonate (EMS)-treated restorer Jinhui 10, tentatively named as narrow and striped leaf 1 (nsll). The nsll displayed pale white leaves at the seeding stage and then white striped leaves in parallel to the main vein at the jointing stage. Meanwhile, its leaf blades are significantly narrower than the control group of Jinhui 10. The chloroplast structures of cells in the white striped area of the nsll mutant break down, and the photosynthetic pigments are significantly lower than that of the wild type. Moreover, fluorescence parameters, such as Fo, Fv/Fm, ФpsⅡ, qP, and ETR, in the nsll mutant are significantly lower than those of the wild type, and the photosynthetic efficiency is also significantly decreased. These changes in leaf color and shape, together with physiological changes in the nsll, result in smaller plant height and a decrease in the most important agro- nomic traits, such as the number of grains per panicle, grain weight, etc. Genetic analysis shows that the narrow and striped traits of the nsll mutant are controlled by a single recessive nuclear gene, which is located between InDel 16 and InDel 12 in chromosome 3. The physical distance is 204 kb. So far, no similar genes of such leaf color and shape in this area have been reported, This study has laid asolid foundation for the gene cloning and function analysis of NSL 1. 相似文献
13.
Yong Zhou YunXia Fang JinYan Zhu ShengQiang Li Fei Gu MingHong Gu GuoHua Liang 《科学通报(英文版)》2010,55(17):1763-1769
The exploration of new genes controlling rice leaf shape is an important foundation for rice functional genomics and plant archi-tecture improvement. In the present study, we identified a rolling leaf mutant from indica variety Yuefeng B, named rl11(t), which exhibited reduced plant height, rolling and narrow leaves. Leaves in rl11(t) mutant showed abnormal number and morphology of veins compared with those in wild type plants. In addition, rl11(t) mutant was less sensitive to the inhibitory effect of auxin than the wild type. Genetic analysis suggested that the mutant was controlled by a single recessive gene. Gene Rl11(t) was initially mapped between SSR markers RM6089 and RM124 on chromosome 4. Thirty-two new STS markers around the Rl11(t) region were developed for fine mapping. A physical map encompassing the Rl11(t) locus was constructed and the target gene was finally delimited to a 31.6 kb window between STS4-25 and STS4-26 on BAC AL606645. This provides useful information for cloning of Rl11(t) gene. 相似文献
14.
15.
LIUDaofeng CHENGZhukuan LIUGuoqing LIUGuozhen WANGYun ZHAOXianfeng ZHULihuang 《科学通报(英文版)》2003,48(9):892-896
A rice initiation-type lesion mimic mutant (lmi) was identified, which was isolated from an indica rice Zhongxian 3037 through γ radiation mutagenesis. Trypan blue staining and sterile culture revealed that the mutant spontaneously developed lesions on the leaves in a developmentally regulated and light-dependent manner. Genetic analysis indicated that the lesion mimic trait was controlled by a single resessive locus. Using public molecular markers and an F2 population derived from lmi and 93-11, we mapped the lmi locus to the short arm of chromosome 8, nearby the centromere, between two SSR markers RM547 and RM331. The genetic distance was 1.2 and 3.2 cM, respectively. Then according to the public rice genomic sequence between the two SSR markers, lmi was further finely tagged by three CAPS markers: C4135-8, C4135-9 and C4135-10. And lmi locus was a co-segregated with marker C4135-10, providing a starting point for lmi gene cloning. 相似文献
16.
LIPeijin ZENGDali LIUXinfang XUDan GUDai LIJiayang QIANQian 《科学通报(英文版)》2003,48(24):2715-2717
Tiller angle of rice is an important agronomic trait that contributes to breed new varieties with ideal architecture. In this study, we report mapping and characterization of a rice mutant defective in tiller angle. At the seedling stage, the newly developed tillers of the mutant plants grow with a large angle that leads to a “lazy“ phenotype at the mature stage. Genetic analysis indicates that this tillerspreading phenotype is controlled by one recessive gene that is allelic to a reported mutant la. Therefore, the mutant was named la-2 and la renamed la-1. To map and clone LA, we constructed a large mapping population. Genetic linkage analysis showed that the LA gene is located between 2 SSR markers RM202 and RM229. By using the 6 newly-developed molecular markers, the LA gene was placed within a 0.4 cM interval on chromosome 11, allowing us to clone LA and study the mechanism that controls rice tiller angle at the molecular level. 相似文献
17.
JingFei Tong YanHong Li YouXin Yang Muhammad Qasim Shahid ZhiXiong Chen Lan Wang JinQuan Li XiangDong Liu YongGen Lu 《科学通报(英文版)》2011,56(19):2016-2024
The wide compatibility gene, S 5 n , can overcome embryo sac sterility between indica and japonica subspecies of rice. Therefore, it is very important to characterize the features of the S 5 n sequence to reveal the origin and evolution of S 5 n . In this paper, 26 cultivated rice haplotypes and 22 wild rice accessions harboring S 5 n were used to sequence S 5 n . The results showed that 15 genotypes among the 48 materials were fully consistent with control cultivar 02428 (CK). The other 33 accessions had different degrees of variation in the S 5 n sequence. Variations in the coding region mainly occurred in the second exon and eight materials showed a 10-bp deletion at 1710?C1719 bp, including wild (O. nivara) and cultivated rice, such as IRW501 and Yuetai B. S 5 n sequences were not biased and evolved neutrally. The 48 materials could be divided into 4 categories using a phylogenetic tree of the amino acid sequences. Most of the wild rice clustered together, and the cultivated rice clustered into another group. Eight cultivated rice and O. nivara (wild rice) clustered in another group, which were found to lack 10 consecutive bases in exon 2. Eight rice varieties with high numbers of differences in their S 5 n coding regions were crossed with testers (typically indica and japonica) to produced test cross F1 populations. The F1s were examined for their ability to overcome indica-japonica hybrid sterility. The result showed that the embryo sac fertility of S 5 n -containing hybrids increased significantly compared with control hybrids, but there were no differences among the materials with divergent sequences, indirectly proving that S 5 n is a non-functional gene. 相似文献