首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olfactory ensheathing cell (OEC) transplantation emerged some years ago as a promising therapeutic strategy to repair injured spinal cord. However, inhibitory molecules are present for long periods of time in lesioned spinal cord, inhibiting both OEC migration and axonal regrowth. Two families of these molecules, chondroitin sulphate proteoglycans (CSPG) and myelin-derived inhibitors (MAIs), are able to trigger inhibitory responses in lesioned axons. Mounting evidence suggests that OEC migration is inhibited by myelin. Here we demonstrate that OEC migration is largely inhibited by CSPGs and that inhibition can be overcome by the bacterial enzyme Chondroitinase ABC. In parallel, we have generated a stable OEC cell line overexpressing the Nogo receptor (NgR) ectodomain to reduce MAI-associated inhibition in vitro and in vivo. Results indicate that engineered cells migrate longer distances than unmodified OECs over myelin or oligodendrocyte-myelin glycoprotein (OMgp)-coated substrates. In addition, they also show improved migration in lesioned spinal cord. Our results provide new insights toward the improvement of the mechanisms of action and optimization of OEC-based cell therapy for spinal cord lesion.  相似文献   

2.
3.
Chick embryo nerve cells from the lumbo-sacral spinal cord have been isolated by trypsinisation and cultivated in Rose chambers on polylysine-L as a substrate. The cells are analysed by scanning electron microscopy. The mode of adherence of these cells to the substrate and the modifications of the surface of the neuroblasts during their transformation into neurocytes are studied.  相似文献   

4.
Olfactory ensheathing cells (OECs) represent an exciting possibility for promoting axonal regeneration within the injured spinal cord. A number of studies have indicated the ability of these cells to promote significant reactive sprouting of injured axons within the injured spinal cord, and in some cases restoration of functional abilities. However, the cellular and/or molecular mechanisms OECs use to achieve this are unclear. To investigate such mechanisms, we report for the first time the ability of OECs to promote post-injury neurite sprouting in an in vitro model of axonal injury. Using this model, we were able to differentiate between the direct and indirect mechanisms underlying the ability of OECs to promote neuronal recovery from injury. We noted that OECs appeared to act as a physical substrate for the growth of post-injury neurite sprouts. We also found that while post-injury sprouting was promoted most when OECs were allowed to directly contact injured neurons, physical separation using tissue culture inserts (1 mm pore size, permeable to diffusible factors but not cells) did not completely block the promoting properties of OECs, suggesting that they also secrete soluble factors which aid post-injury neurite sprouting. Furthermore, this in vitro model allowed direct observation of the cellular interactions between OECs and sprouting neurites using live-cell-imaging techniques. In summary, we found that OECs separately promote neurite sprouting by providing a physical substrate for growth and through the expression of soluble factors. Our findings provide new insight into the ability of OECs to promote axonal regeneration, and also indicate potential targets for manipulation of these cells to enhance their restorative ability.Received 19 January 2004; received after revision 8 March 2004: accepted 17 March 2004  相似文献   

5.
6.
Zusammenfassung Es wird gezeigt, dass die Verteilung von Benzpyren auf die Proteine von octanolextrahiertem Plasma einen Einblick in die bei der Plasmabindung von Substanzen vorkommenden Konkurrenzreaktionen erlaubt.  相似文献   

7.
8.
9.
10.
11.
The mammalian olfactory system has the unique property in the permanent turnover of the olfactory sensory neurons under normal conditions and following injury. This implies that the topographical map of the epithelium-to-bulb connections generated during ontogenesis has to be maintained despite neuron renewal in order to insure olfactory information processing. One way to investigate this issue has been to disrupt the peripheral connections and analyze how neural connections may be reestablished as well as how animals may perform in olfactory-mediated tasks. This review surveys the main data pertaining to both morphological and functional recoveries taking place in the peripheral olfactory system following olfactory bulb deafferentation. Conclusions from these studies are enlightened by recent data from molecular biology.  相似文献   

12.
13.
14.
15.
To determine if intestinal stromal cells secrete diffusible factors such as insulin-like growth factors (IGFs) capable of regulating epithelial cell growth in vitro, stromal cells were isolated by enzymatic digestion of rat intestine. Incorporation of [3H]thymidine into DNA and [14C]leucine into protein of IEC-6 cells, a model intestinal epithelial cell line, was significantly increased (two- to threefold) when the IEC-6 cells were co-cultured with stromal cells, relative to IEC-6 cells grown alone. Medium conditioned by stromal cells stimulated DNA synthesis of IEC-6 cells in a dose-dependent manner. Analysis of the conditioned medium revealed that intestinal stromal cells secreted IGF-I, but little IGF-II, in addition to an M r 32,000 IGF-binding protein (IGFBP-2) and an IGFBP having M r∼ 24,000. We conclude that rat intestinal stromal cells secrete one or more diffusible factors, which may include IGF-I and IGFBPs, capable of stimulating proliferation of IEC-6 cells in vitro. Received 25 August 1997; received after revision 7 November 1997; accepted 20 November 1997  相似文献   

16.
17.
18.
19.
20.
Zusammenfassung Das elektrophoretische Muster von Histonen und sauren Zellkernproteinen von Hühnerembryonen und deren primären und sekundären Fibroblastzellen wurde qualitativ und quantitativ verglichen. Die Zellkernproteine der verschiedenen Zelltypen erwiesen sich qualitativ als identisch, die relative quantitative Verteilung der Kernproteine war jedoch leicht verschieden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号