共查询到16条相似文献,搜索用时 93 毫秒
1.
对于任意正整数 ,设 和 分别是关于 的Euler函数和Smarandache函数. 利用初等的方法,得到了方程 当 时的所有正整数解. 相似文献
2.
3.
对于任意给定的正整数n,ω(n),表示的所有不同素因子的个数.研究了方程φ(n^2)=2^ω^(n^2)的可解性,并给出了该方程的所有正整数解. 相似文献
4.
对任意正整数n,著名的Smarandache 函数S(n)定义为最小的正整数m, 使得n|m!.Euler函数?n)定义为所有不超过n且与n互素的正整数的个数.用初等方法研究了方程?n)=S(n2)和?n)=S(n3),并给出了它们的全部解. 相似文献
5.
令φ_e(n)为广义Euler函数,S(n)为Smarandache函数,其中e为正整数。探讨包含广义Euler函数φ_3(n)和Smarandache函数S(n)的方程φ_3(n)=S(n~8)的可解性问题,利用这2个数论函数的有关性质,给出了这一方程在φ_3(n)=3~(-1)φ(n)条件下无正整数解的结论。 相似文献
6.
利用初等数论、组合分析以及C++程序对方程φ(n)=S(n^10)进行讨论,证明了该方程仅有正整数解n=1,这里对于任意正整数n,φ(n)和S(n)分别表示关于n的Euler函数和Smaran-dache函数。 相似文献
7.
一个包含Euler函数的方程 总被引:3,自引:2,他引:3
吕志宏 《西北大学学报(自然科学版)》2006,36(1):17-20
目的研究方程φ(φ(n))=2ω(n)的可解性。方法利用初等方法以及Euler函数的性质。结果给出了方程φ(φ(n))=2ω(n)的所有正整数解。结论确定该方程共有20个正整数解。 相似文献
8.
关于数论函数方程φ(n) =S(n5) 总被引:2,自引:0,他引:2
对于正整数n,设φ(n)和S(n)分别是Euler函数和Smarandache函数.证明了:方程φ(n)=S(n5)仅有解n=1,64. 相似文献
9.
10.
张四保 《北华大学学报(自然科学版)》2019,20(1)
令φ(n)为Euler函数,φ_e(n)为广义Euler函数.讨论了Euler函数φ(n)与广义Euler函数φ_2(n)混合的两个方程φ_2(φ(m-φ_2(m)))=2与φ(φ_2(m-φ2(m)))=2的正整数解,利用分类讨论的方式及初等方法,分别得到了这两个方程各自的所有正整数解. 相似文献
11.
王明军 《海南大学学报(自然科学版)》2012,39(1):7-8
用分类讨论和初等方法完全解决了方程SL(n)=am(n)和SL(n)=φ(n2)的可解性,其中am(n)为n的m次幂剩余数,φ(n)为欧拉函数,丰富了数论函数SL(n)的性质和数论函数方程的研究. 相似文献
12.
乐茂华 《佛山科学技术学院学报(自然科学版)》2004,22(4):1-2
对于正整数n,设φ(n)和S(n)分别是n的Euler函数和Smarandache函数。本文解决了有关φ(n)和.S(n)的一个方程问题。 相似文献
13.
对于正整数n,设Ф(n)和s(n)分别是Euler函数和Smarandache函数,证明了:方程Ф(n)=s(n^7)仅有整数解n=1,64,72,80. 相似文献
14.
利用初等及组合方法研究了一个包含Smarandache函数及伪Smarandache函数方程的可解性,证明了该方程有无穷多个正整数解,并给出了该方程所有正整数解的具体形式. 相似文献
15.
利用初等方法,研究一个包含Smarandache函数方程的可解性,给出了它的所有正整数解. 相似文献
16.
张四保 《吉林大学学报(理学版)》2022,60(2):189-0201
令φe(m)为广义Euler函数, 其中e为正整数. 针对方程φ2(φ6(m))=2ω(m)的可解性问题, 基于广义Euler函数φ2(m)与广义Euler函数φ6(m)的计算公式, 并结合Euler函数φ(m)的性质, 给出该方程的全部92个整数解. 相似文献