首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of these four detergents (two non-ionic: Titron X100 and Tween 80, two ionic: sodium cholate and sodium dedeoxycholate) upon the respiratory intensities of mitochondria and upon the ADP/0 and respiratory control ratios were observed. At low concentrations and in the absence of exogenous ADP, non ionic as well as ionic detergents provoked a threefold (or fourfold) increase of the respiratory intensities of mitochondria. At higher concentrations, the four detergents were inhibitory for mitochondrial oxidations in the order: Triton X 100 greater than DOC greater than cholate greater than Tween 80. At increasing doses, the four detergents progressively decreased the phosphorylating capacities of mitochondria.  相似文献   

2.
Regulated protein degradation by ATP-dependent proteases plays a fundamental role in the biogenesis of mitochondria. Membrane-bound and soluble ATP-dependent proteases have been identified in various subcompartments of this organelle. Subunits composing these proteases are evolutionarily conserved from yeast to humans and, in support of an endosymbiotic origin of mitochondria, evolved from prokaryotic ancestors: the PIM1/Lon protease is active in the matrix of mitochondria, while the i-AAA protease and the m-AAA protease mediate the turnover of inner membrane proteins. Most of the knowledge concerning the biogenesis and the physiological role of ATP-dependent proteases comes from studies in the yeast Saccharomyces cerevisiae. Proteases were found to be required for mitochondrial stasis, for the maintenance of the morphology of the organelle and for mitochondrial genome integrity. ATP-dependent proteolysis is crucial for the expression of mitochondrially encoded subunits of respiratory chain complexes and for the assembly of these complexes. Hence, mitochondrial ATP-dependent proteases exert multiple roles which are essential for the maintenance of cellular respiratory competence.  相似文献   

3.
Summary In vitro applications of juvenile hormone III and a juvenile hormone analogue, methoprene, were made to mitochondria isolated from dorsal longitudinal flight muscles of adultLocusta migratoria L. Both compounds completely inhibited oxygen consumption at the highest concentrations used. At lower concentrations, state 3 respiration and respiratory control were reduced but the ADP/O ratio was largely unaffected.  相似文献   

4.
Mitochondrial intracrines are extracellular signaling proteins, targeted to the mitochondria. The pathway for mitochondrial targeting of mitochondrial intracrines and actions in the mitochondria remains unknown. Megalin/LRP2 mediates the uptake of vitamins and proteins, and is critical for clearance of amyloid-β protein from the brain. Megalin mutations underlie the pathogenesis of Donnai–Barrow and Lowe syndromes, characterized by brain defects and kidney dysfunction; megalin was not previously known to reside in the mitochondria. Here, we show megalin is present in the mitochondria and associates with mitochondrial anti-oxidant proteins SIRT3 and stanniocalcin-1 (STC1). Megalin shuttles extracellularly-applied STC1, angiotensin II and TGF-β to the mitochondria through the retrograde early endosome-to-Golgi transport pathway and Rab32. Megalin knockout in cultured cells impairs glycolytic and respiratory capacities. Thus, megalin is critical for mitochondrial biology; mitochondrial intracrine signaling is a continuum of the retrograde early endosome-to-Golgi-Rab32 pathway and defects in this pathway may underlie disease processes in many systems.  相似文献   

5.
Summary The interaction between BW755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline), a potent inhibitor of both lipoxygenase and cyclo-oxygenase, and respiratory chain in mitochondria and electron transport particles (ETP) from rat livers was examined. BW755C accelerated the oxygen uptake by mitochondria without the addition of substrate for the respiratory chain. Spectrophotometric study revealed that BW755C was quickly oxidized by cytochrome oxidase in mitochondria to a compound possessing an absorption maximum at 524 nm. p-Phenylenediamine (p-diaminobenzene, PPDA), which, like BW755C, serves as an electron donor to cytoschrome oxidase, was shown to inhibit the generation of active oxygen in macrophages; the inhibition was stronger than that of BW755C. These results strongly suggest that the oxidative conversion of BW755C by mitochondrial cytochrome oxidase is associated with its potentially inhibitory action on the active oxygen-generating system in phagocytes.The authors are indebted to Dr M. Hori, Gifu College of Pharmacy and to Dr Y. Orii, Kyoto University for their kind supplies of BW755C and pure cytochrome oxidase, respectively.  相似文献   

6.
The interaction between BW755C (3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline), a potent inhibitor of both lipoxygenase and cyclo-oxygenase, and respiratory chain in mitochondria and electron transport particles (ETP) from rat livers was examined. BW755C accelerated the oxygen uptake by mitochondria without the addition of substrate for the respiratory chain. Spectrophotometric study revealed that BW755C was quickly oxidized by cytochrome oxidase in mitochondria to a compound possessing an absorption maximum at 524 nm. p-Phenylenediamine (p-diaminobenzene, PPDA), which, like BW755C, serves as an electron donor to cytochrome oxidase, was shown to inhibit the generation of active oxygen in macrophages; the inhibition was stronger than that of BW755C. These results strongly suggest that the oxidative conversion of BW755C by mitochondrial cytochrome oxidase is associated with its potentially inhibitory action on the active oxygen-generating system in phagocytes.  相似文献   

7.
Summary Isolated human term placenta mitochondria catalyse oxidation of external NADH in the presence of cytochrome c. This reaction is insensitive to the respiratory chain inhibitors such as rotenone and antimycin A, and is not coupled to phosphorylation. Comparison of the effect of Mg++ ion on NADH plus cytochrome c oxidation by human term placental, human skeletal muscle and rat skeletal mitochondria showed that Mg++ ion exerts an inhibitory effect in the case of human mitochondria and a stimulatory effect in the case of rat skeletal muscle mitochondria.This work has been supported by a grant from Ministry of Higher Education Science and Technology within the project No. 01.02.  相似文献   

8.
Isolated rat skeletal muscle mitochondria took up about 40-ng-atoms O per mg protein, with glutamine as the only respiratory substrate. The mitochondria incubated in the presence of glutamine and KCN formed both ammonia and glutamate in equivalent amounts. The experiments reported here provide suggestive evidence that rat skeletal muscle mitochondria contain glutaminase (L-glutamine amidohydrolase EC 3.5.1.2.) activity.  相似文献   

9.
Isolated human term placenta mitochondria catalyse oxidation of external NADH in the presence of cytochrome c. This reaction is insensitive to the respiratory chain inhibitors such as rotenone and antimycin A, and is not coupled to phosphorylation. Comparison of the effect of Mg++ ion on NADH plus cytochrome c oxidation by human term placental, human skeletal muscle and rat skeletal mitochondria showed that Mg++ ion exerts an inhibitory effect in the case of human mitochondria and a stimulatory effect in the case of rat skeletal muscle mitochondria.  相似文献   

10.
Summary Isolated rat skeletal muscle mitochondria took up about 40-ng-atoms O per min per mg protein, with glutamine as the only respiratory substrate. The mitochondria incubated in the presence of glutamine and KCN formed both ammonia and glutamate in equivalent amounts. The experiments reported here provide suggestive evidence that rat skeletal muscle mitochondria contain glutaminase (L-glutamine amidohydrolase EC 3.5.1.2.) activity.This work was supported by the Polish Academy of Sciences within the project II. 1, 2, 6.  相似文献   

11.
R A Garrick 《Experientia》1986,42(9):1020-1021
Potassium movements were monitored in liver mitochondria from control and alloxan diabetic rats with a cationic electrode. There was net accumulation of K+ after Ca2+ addition to the mitochondria with the diabetic but not with the control.  相似文献   

12.
13.
Various adenosine triphosphate (ATP)-dependent proteases were identified within mitochondria which mediate selective mitochondrial protein degradation and fulfill crucial functions in mitochondrial biogenesis. The matrix-localized PIM1 protease, a homologue of theEscherichia coli Lon protease, is required for respiration and maintenance of mitochondrial genome integrity. Degradation of non-native polypeptides by PIM1 protease depends on the chaperone activity of the mitochondrial Hsp70 system, posing intriguing questions about the relation between the proteolytic system and the folding machinery in mitochondria. The mitochondrial inner membrane harbors two ATP-dependent metallopeptidases, them- and thei-AAA protease, which expose their catalytic sites to opposite membrane surfaces and cooperate in the degradation of inner membrane proteins. In addition to its proteolytic activity, them-AAA protease has chaperone-like activity during the assembly of respiratory and ATP-synthase complexes. It constitutes a quality control system in the inner membrane for membrane-embedded protein complexes.  相似文献   

14.
Summary Potassium movements were monitored in liver mitochondria from control and alloxan diabetic rats with a cationic electrode. There was net accumulation of K+ after Ca2+ addition to the mitochondria with the diabetic but not with the control.  相似文献   

15.
Fenretinide induces apoptosis in neuroblastoma by induction of reactive oxygen species (ROS). In this study, we investigated the role of mitochondria in fenretinide-induced cytotoxicity and ROS production in six neuroblastoma cell lines. ROS induction by fenretinide was of mitochondrial origin, demonstrated by detection of superoxide with MitoSOX, the scavenging effect of the mitochondrial antioxidant MitoQ and reduced ROS production in cells without a functional mitochondrial respiratory chain (Rho zero cells). In digitonin-permeabilized cells, a fenretinide concentration-dependent decrease in ATP synthesis and substrate oxidation was observed, reflecting inhibition of the mitochondrial respiratory chain. However, inhibition of the mitochondrial respiratory chain was not required for ROS production. Co-incubation of fenretinide with inhibitors of different complexes of the respiratory chain suggested that fenretinide-induced ROS production occurred via complex II. The cytotoxicity of fenretinide was exerted through the generation of mitochondrial ROS and, at higher concentrations, also through inhibition of the mitochondrial respiratory chain.  相似文献   

16.
The long-recognized fact that oxidative stress within mitochondria is a hallmark of mitochondrial dysfunction has stimulated the development of mitochondria-targeted antioxidant therapies. Melatonin should be included among the pharmacological agents able to modulate mitochondrial functions in cancer, given that a number of relevant melatonin-dependent effects are triggered by targeting mitochondrial functions. Indeed, melatonin may modulate the mitochondrial respiratory chain, thus antagonizing the cancer highly glycolytic bioenergetic pathway of cancer cells. Modulation of the mitochondrial respiratory chain, together with Ca2+ release and mitochondrial apoptotic effectors, may enhance the spontaneous or drug-induced apoptotic processes. Given that melatonin may efficiently counteract the Warburg effect while stimulating mitochondrial differentiation and mitochondrial-based apoptosis, it is argued that the pineal neurohormone could represent a promising new perspective in cancer treatment strategy.  相似文献   

17.
Although essential for energy production and cell fate decisions, the mechanisms that govern protein homeostasis, or proteostasis, in mitochondria are only recently beginning to emerge. Fresh experimental evidence has uncovered a role of molecular chaperones of the heat shock protein 90 (Hsp90) family in overseeing the protein folding environment in mitochondria. Initially implicated in protection against cell death, there is now evidence that Hsp90-directed protein quality control in mitochondria connects to hosts of cellular homeostatic networks that become prominently exploited in human cancer.  相似文献   

18.
C N Sun 《Experientia》1976,32(5):630-632
In examination of six retinoblastoma tumor specimens, bizzare mitochondria were often found. Some are irregular forms with focal expansion and constrictions. Occasionally, a portion of the mitochondria forms rings. Branching mitochondria are also seen. Other striking features of the mitochondria from tumor cells are the alternation of cristae. Dense bodies are also occasionally observed within the mitochondria. Morphological modifications of the mitochondria may be as results of pathological conditions of the tumor cells.  相似文献   

19.
Mitochondria were isolated from fragments of heart auricles, that were cut off during surgical intracardiac operations. They were incubated with either [14 14C] erucic acid or [10 14C] oleic acid as a control. In the experimental conditions used, the radioactive products soluble in perchloric acid, that are issued from the beta-oxidation reactions in mitochondria, were formed in much lower amounts from erucic acid than from oleic acid. These results show the very low capacity of human heart mitochondria to use directly erucic acid as a substrate for energy requirements, as has been observed before with other animal species. Activation of fatty acids, the preliminary step of their beta-oxidation, was also observed to be very much lower with erucic acid.  相似文献   

20.
Summary In examination of six retinoblastoma tumor specimens, bizzare mitochondria were often found. Some are irregular forms with focal expansion and constrictions. Occasionally, a portion of the mitochondria forms rings. Branching mitochondria are also seen. Other striking features of the mitochondria from tumor cells are the alteration of cristae. Dense bodies are also occasionally observed within the mitochondria. Morphological modifications of the mitochondria may be as results of pathological conditions of the tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号