首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The state and formation mechanism of α-Si3N4 in Fe–Si3N4 prepared by flash combustion were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that α-Si3N4 crystals exist only in the Fe–Si3N4 dense areas. When FeS i75 particles react with N2, which generates substantial heat, a large number of Si solid particles evaporate. The product between Si gas and N2 is a mixture of α-Si3N4 and β-Si3N4. At the later stage of the flash combustion process, α-Si3N4 crystals dissolve and reprecipitate as β-Si3N4 and the β-Si3N4 crystals grow outward from the dense areas in the product pool. As the temperature decreases, the α-Si3N4 crystals cool before transforming into β-Si3N4 crystals in the dense areas of Fe–Si3N4. The phase composition of flash-combustion-synthesized Fe–Si3N4 is controllable through manipulation of the gas-phase reaction in the early stage and the α→β transformation in the later stage.  相似文献   

2.
The feasibility of 5 kg β-SiC synthesized in one batch was demonstrated through igniting the mixture of Si, C-black and polytetrafluoroethylene (PTFE) under different nitrogen pressures. The effect of experimental parameters, including the contents of PTFE, nitrogen pressure, preheating, and raw materials distribution forms were investigated. The results show that the products are β-SiC with equiaxed grains. The average grain size is less than 200 nm. The powders loaded loosely promote reaction heat dispersing, resulting in small grains. High purity β-SiC powders are obtained when the PTFE content is as low as 5wt%, which simplifies the process and decreases the cost effectively. The ceramic sintered from the obtained β-SiC powders presents the hardness of 22.20 GPa, the bending strength as high as 715.15 MPa and the fracture toughness of 8.179 MPa·m1/2, which are higher than those of ceramics fabricated with α-SiC produced by combustion synthesis.  相似文献   

3.
In this study, a serpentine channel pouring process was used to prepare the semi-solid Al–20%Si alloy slurry and refine primary Si grains in the alloy. The effects of the pouring temperature, number of curves in the serpentine channel, and material of the serpentine channel on the size of primary Si grains in the semi-solid Al–20%Si alloy slurry were investigated. The results showed that the pouring temperature, number of the curves, and material of the channel strongly affected the size and distribution of the primary Si grains. The pouring temperature exerted the strongest effect, followed by the number of the curves and then the material of the channel. Under experimental conditions of a four-curve copper channel and a pouring temperature of 701℃, primary Si grains in the semi-solid Al–20%Si alloy slurry were refined to the greatest extent, and the lath-like grains were changed into granular grains. Moreover, the equivalent grain diameter and the average shape coefficient of primary Si grains in the satisfactory semi-solid Al–20%Si alloy slurry were 24.4 μm and 0.89, respectively. Finally, the refinement mechanism and distribution rule of primary Si grains in the slurry prepared through the serpentine channel pouring process were analyzed and discussed.  相似文献   

4.
The aim of the present study was to fabricate Fe–TiC–Al2O3 composites on the surface of medium carbon steel. For this purpose, TiO2–3C and 3TiO2–4Al–3C–xFe (0 ≤ x ≤ 4.6 by mole) mixtures were pre-placed on the surface of a medium carbon steel plate. The mixtures and substrate were then melted using a gas tungsten arc cladding process. The results show that the martensite forms in the layer produced by the TiO2–3C mixture. However, ferrite–Fe3C–TiC phases are the main phases in the microstructure of the clad layer produced by the 3TiO2–4Al–3C mixture. The addition of Fe to the TiO2–4Al–3C reactants with the content from 0 to 20wt% increases the volume fraction of particles, and a composite containing approximately 9vol% TiC and Al2O3 particles forms. This composite substantially improves the substrate hardness. The mechanism by which Fe particles enhance the TiC + Al2O3 volume fraction in the composite is determined.  相似文献   

5.
《科学通报(英文版)》1998,43(2):163-163
The morphological characteristics of α_Al-2O-3 crystallites obtained directly from hydro/solv othermal solvents are reported and the formation mechanisms of corundum morphology are discussed from crystal growth and crystal chemistry principles. The crystal growth process is considered as a process of incorporation of growth units on the growth interfaces, and the crystal morphology is determined by the linkage of the coordinated polyhedra.  相似文献   

6.
研究非均相沉淀-热还原法制备Fe包覆α-Si3N4复合粉末常压烧结界面反应特性,并进行热力学分析.研究结果表明:在1 600℃下烧结时,α-Si3N4部分转变为β-Si3N4,Fe相消失,转而生成FeSi化合物;在1700℃下烧结时,α-Si3N4基本转变为β-Si3N4,FeSi化合物消失,Fe相重新出现;在烧结过程中,FeSi化合物或Fe晶粒发生明显长大,呈圆球状分布在Si3N4晶粒之间,实验结果可通过热力学分析进行解释.  相似文献   

7.
We report a simple method for preparing copper(II) molybdate (CuMoO4) powders via a combustion-like process. A gel was first prepared by the polymerizable complex method, where citric acid was used as a complexing and polymerizing agent and nitric acid was used as an oxidizing agent. The thermal decomposition behavior of the (CuMo)-precursor gel was studied by thermogravimetry–differential thermal analysis (TG–DTA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). We observed that the crystallization of CuMoO4 powder was completed at 450°C. The obtained homogeneous powder was composed of grains with sizes in the range from 150 to 500 nm and exhibited a specific surface area of approximately 5 m2/g. The average grain size increased with increasing annealing temperature. The as-prepared CuMoO4 crystals showed a strong green photoluminescence emission at room temperature under excitation at 290 nm, which we mainly interpreted on the basis of the Jahn-Teller effect on [MoO42- ] complex anions. We also observed that the photoluminescence intensity increased with increasing crystallite size.  相似文献   

8.
By using a simple and low-cost arc-discharge method in deionized water, high purity Fe3O4 nanoparti- cles have been synthesized on large scale. The structure of these nanoparticles has been studied by means of transmission electron microscope and X-ray diffraction. The synthesized Fe3O4 nanoparticles show well-defined spherical shape, with diameters ranging from 10 to 30 nm and the average diameter about 20 nm. By investigating the effects of the different processing conditions, optimum parameters were obtained. Moreover, the size of the as-grown nanoparticles can also be controlled through ad- justing the processing parameters. These Fe3O4 nanoparticles were magnetic materials, showing saturation magnetization of 64.97 emu/g at room temperature.  相似文献   

9.
10.
In this work, the effects of HNO3 concentration on the pit morphologies of high-cubic-texture aluminum foil etched in HNO3–HCl and HNO3–H2SO4–HCl solutions were investigated. When the aluminum foil was etched in HNO3–HCl solutions, the morphologies of pits transformed from irregular tunnels to typical tunnels (as inverted pyramids) and shallow cuboids as the HNO3 concentration in the etchant solution was increased. However, as the HCl concentration in the etchant solution was increased, the morphologies of pits transformed from shallow cuboids to typical tunnels (as inverted pyramids) and irregular tunnels. When the aluminum foil was etched in n N HNO3–(7.2?n) N H2SO4–0.8 N HCl solutions, the morphologies of the pits transformed from typical tunnels (i.e., the number of sub-tunnels formed on the main tunnels increased) to irregular tunnels (corrugated tunnels and polyline tunnels) as the HNO3 concentration in the etchant solution was increased. These effects are attributed primarily to corrosion on the (100) and (010) faces of pits being accelerated and to the (001) faces being prone to passivation to different degrees when various concentrations of HNO3 are added to the etchant solutions.  相似文献   

11.
The effects of dispersed second phase particles on α-ferrite(α) to austenite(γ) transformation at 1140 K in Fe–C alloy were studied by means of phase field simulation. According to the simulated results, it was found that the particle could retard the migration of α/γ interface. Importantly,both the morphology of particles and the interfacial energy of particle/matrix(α or γ) interface affect the magnitude of the retarding effect. More specifically, the particles with smaller aspect ratio bring stronger retarding force, and when the interfacial energy of particle/γ interface is larger than that of particle/α interface, the retarding effect also becomes significant. These phenomena could be explained from the viewpoint of change in the total amount of the interfacial energy of the simulation system.  相似文献   

12.
In this work,Fe_3Si–Si_3N_4–Al_2O_3 composites were prepared at 1300°C in an N_2 atmosphere using fused corundum and tabular alumina particles,Al_2O_3 fine powder,and ferrosilicon nitride(Fe_3Si–Si_3N_4) as raw materials and thermosetting phenolic resin as a binder.The effect of ferrosilicon nitride with different concentrations(0wt%,5wt%,10wt%,15wt%,20wt%,and 25wt%) on the properties of Fe_3Si–Si_3N_4–Al_2O_3 composites was investigated.The results show that the apparent porosity varies between 10.3% and 17.3%,the bulk density varies from 2.94 g/cm~3 and 3.30 g/cm~3,and the cold crushing strength ranges from 67 MPa to 93 MPa.Under the experimental conditions,ferrosilicon nitride,whose content decreases substantially,is unstable;part of the ferrosilicon nitride is converted into Fe_2C,whereas the remainder is retained,eventually forming the ferrosilicon alloy.Thermodynamic assessment of the Si_5AlON_7 indicated that the ferrosilicon alloy accelerated the reactions between Si_3N_4 and α-Al_2O_3 fine powder and that Si in the ferrosilicon alloy was nitrided directly,forming β-Si Al ON simultaneously.In addition,fused corundum did not react directly with Si_3N_4 because of its low reactivity.  相似文献   

13.
Typical O??-sialon-based ceramics, with a formula of Si2?x Al x O1+x N2?x , where x was set as 0.25, were fabricated by in-situ synthesis. Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25?C0.30 MPa, and their microstructure, phase content, and thermal conductivity were evaluated. The effects of O??-sialon and ??-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O??-sialon-based ceramics decreased with the ratio of O??-sialon/??-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O??-sialon ceramics sintered at 1360°C was 1.197 W·m?1·K?1.  相似文献   

14.
Inspired by the curved branches of fractal trees, hooked Ni–Fe fibers were grown in situ in Ni–Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni–Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni–Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni–Fe nanostructures played an important role in the growth of curved hooked Ni–Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni–Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni–Fe fibers led to an improvement in their wear properties during wear tests.  相似文献   

15.
The liquid structure of seven representative Fe–Si–B alloys has been investigated by ab initio molecular dynamics simulation focusing on the role of clusters in terms of glass-forming ability(GFA) and crystallization. It is demonstrated that the type of primary phase precipitated from amorphous state under heat treatment is determined by the relative fraction and role of various clusters in melt. The alloy melt shows higher stability and resultantly larger GFA when there is no dominant cluster or several clusters coexist, which explains the different GFAs and crystallization processes at various ratios of Si and B in the Fe–Si–B system. The close correlation among clusters, crystalline phase and GFA is also studied.  相似文献   

16.
A series of novel steel–Ti(C,N) composites was fabricated by spark plasma sintering(SPS) and subsequent heat treatment. The hardness, indentation fracture resistance, and wear behaviour of the steel–Ti(C,N) composites were compared with those of the unreinforced samples, and their potentials were assessed by comparison with traditional cermet/hardmetal systems. The results showed that with the addition of 20 wt% Ti(C,N), the wear rates of the newly examined composites reduced by a factor of about 2 to 4 and were comparable to those of cermets and hardmetals. The martensitic transformation of the steel matrix and the formation of in situ carbides induced by heat treatment enhanced the wear resistance. Although the presence of excessive in situ carbides improved the hardness, the low indentation fracture resistance(IFR) value resulted in brittle fracture, which in turn resulted in poor wear property. Moreover, the operative wear mechanisms were investigated. This study provides a practical and cost-effective approach to prepare steel–Ti(C,N) composites as potential wear-resistant materials.  相似文献   

17.
Fe2(Mo04)3/Si3N4复合粉末还原及热压微观组织结构分析   总被引:1,自引:0,他引:1  
以α-Si3N4,Fe(NO3)3·9H2O和NH4Mo7O24·4H2O为原料,采用非均相沉淀法制备Fe2(M0O4)3/Si3N4复合粉末,采用氢气还原与热压法获得Fe-Mo/Si3N4复合粉末与烧结体,采用x线衍射仪(XRD)、电子能谱(EDS)、电镜扫描(SEM)和电镜透射(TEM)等方法对Fe-Mo/Si3N4复合粉末与烧结体物相、成分及微结构进行观察与分析.分析结果表明:Fe-Mo/Si3N4复合粉末主要成分为α-Si3N4,Mo,Si和Fe-Mo氮化物(Fe6M07N2和Fe3M03N),其中Mo颗粒长大;粒径为4-7 μm的Mo5Si3大颗粒均匀镶嵌在Si3N4,Fe-Mo氮化物(Fe6Mo7N2和Fe3Mo3N)及Si02的混合物组成的粒径为1 μm左右的小颗粒之中.  相似文献   

18.
The wettability of V-active PdCo-based alloys on Si3N4ceramic was studied with the sessile drop method. And the alloy of Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6(wt%),was developed for Si3N4ceramic joining in the present investigation. The rapidly-solidified brazing foils were fabricated by the alloy Pd50.0–Co33.7–Ni4.0–Si2.0–B0.7–V9.6. The average room-temperature three-point bend strength of the Si3N4/Si3N4joints brazed at 1453 K for 10 min was 205.6 MPa,and the newly developed braze gives joint strengths of 210.9 MPa,206.6 MPa and 80.2 MPa at high temperatures of 973 K,1073 K and 1173 K respectively. The interfacial reaction products in the Si3N4/Si3N4joint brazed at 1453 K for10 min were identified to be VN and Pd2Si by XRD analysis. Based on the XEDS analysis result,the residual brazing alloy existing at the central part of the joint was verified as Co-rich phases,in which the concentration of element Pd was high up to 18.0–19.1 at%. The mechanism of the interfacial reactions was discussed. Pd should be a good choice as useful alloying element in newer high-temperature braze candidates for the joining of Si-based ceramics.  相似文献   

19.
To enhance the microwave absorption performance of silicon carbide nanowires (SiCNWs), SiO2 nanoshells with a thickness of approximately 2 nm and Fe3O4 nanoparticles were grown on the surface of SiCNWs to form SiC@SiO2@Fe3O4 hybrids. The microwave absorption performance of the SiC@SiO2@Fe3O4 hybrids with different thicknesses was investigated in the frequency range from 2 to 18 GHz using a free-space antenna-based system. The results indicate that SiC@SiO2@Fe3O4 hybrids exhibit improved microwave absorption. In particular, in the case of an SiC@SiO2 to iron(Ⅲ) acetylacetonate mass ratio of 1:3, the microwave absorption with an absorber of 2-mm thickness exhibited a minimum reflection loss of -39.58 dB at 12.24 GHz. With respect to the enhanced microwave absorption mechanism, the Fe3O4 nanoparticles coated on SiC@SiO2 nanowires are proposed to balance the permeability and permittivity of the materials, contributing to the microwave attenuation.  相似文献   

20.
This paper focuses on the effects of alkline-earth metal titante AETiO_3(AE = Mg,Ca,Sr) doping on the microstructure and electric characteristics of CaCu_3Ti_4O_(12) thin films prepared by the sol-gel method.The results showed that the grain size of CCTO thin films could be increased by MgTiO_3 doping.The movement of the grain boundaries was impeded by the second phases of CaTiO_3 and SrTiO_3 concentrating at grain boundaries in CaTiO_3 and SrTiO_3 doped CCTO thin films.Rapid ascent of dielectric constant could be observed in 0.1Mg TiO_3 doped CCTO thin films,which was almost as three times high as pure CCTO thin film and the descent of the dielectric loss at low frequency could also be observed.In addition,the nonlinear coefficient(α),threshold voltage(V_T) and leakage current(I_L) of AETiO_3 doped CCTO thin films(AE = Mg,Ca,Sr) showed different variation with the increasing content of the MgTiO_3,CaTiO_3 and SrTiO_3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号