首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the presence of Zn2+ (0.3 mM), carbachol (10–6 M) or histamine (10–5 M) induced the phasic response in guinea-pig taenia caeci while the tonic response was markedly inhibited. However, when the muscles were kept in Zn2+-containing medium following the first stimulation with either carbachol or histamine, neither application of carbachol nor of histamine elicited another phasic contraction. Caffeine (25 mM) did not induce contraction in the presence of Zn2+. After the washing out of caffeine in the presence of Zn2+, however, the muscle did then develop the phasic response on the application of carbachol or histamine. In conclusion, Zn2+ did not affect the carbachol or histamine-induced Ca2+ release from the storage sites. However, when Zn2+ was continuously present, Ca2+ was not supplied to the storage sites. Furthermore, carbachol and histamine mobilized a common cellular Ca2+ store, but they activated Ca2+ release channels different from the ones activated by caffeine in the Ca2+ storage sites.  相似文献   

2.
Zn2+ in low concentrations (0.005–0.1 mM) inhibited the transient contractions in response to caffeine (25 mM) in a dose-dependent manner in smooth muscle of intact guinea-pig taenia caeci. At Zn2+ concentrations higher than 0.1 mM, caffeine did not elicit any response. After saponin-treatment of the fibres, which leaves the Ca2+ storage sites intact, caffeine contraction was completely inhibited by Zn2+ at a relatively low concentration (0.03 mM). However, in Triton-X-100-treated fibres, in which the Ca2+ release sites are destroyed, the contraction could be induced in the presence of Zn2+ by an increase in Ca2+. In conclusion, Zn2+ can block the intracellular Ca2+ release from caffeine-sensitive release sites in taenia caeci.  相似文献   

3.
Summary The role of Ca2+ in secretagogue-induced insulin release is documented not only by the measurements of45Ca fluxes in pancreatic islets, but also, by direct monitoring of cytosolic free Ca2+, [Ca2+]i. As demonstrated, using the fluorescent indicator quin 2, glyceraldehyde, carbamylcholine and alanine raise [Ca2+]i in the insulin secreting cell line RINm5F, whereas glucose has a similar effect in pancreatic islet cells. The regulation of cellular Ca2+ homeostasis by organelles from a rat insulinoma, was investigated with a Ca2+ selective electrode. The results suggest that both the endoplasmic reticulum and the mitochondria participate in this regulation, albeit at different Ca2+ concentrations. By contrast, the secretory granules do not appear to be involved in the short-term regulation of [Ca2+]i. Evidence is presented that inositol 1,4,5-trisphosphate, which is shown to mobilize Ca2+ from the endoplasmic reticulum, is acting as an intracellular mediator in the stimulation of insulin release.  相似文献   

4.
Alcian blue and plumbagin induced transient Ca2+ release from fragmented sarcoplasmic reticulum. Dithiothreitol (DTT) and glutathione (GSH) partially blocked Ca2+ release induced by these oxidizing compounds. Pretreatment of alcian blue and plumbagin with DTT or GSH for more than 1 min was required to abolish the ability of the oxidizing compounds to release Ca2+. Mg2+ and ruthenium red completely blocked alcian blue-and plumbagin-induced Ca2+ release. These results suggest that oxidation of sulfhydryls on Ca2+ release channels induces Ca2+ release even in the presence of GSH in situ.  相似文献   

5.
To understand the role of calcium ions in thigmotaxis inParamecium caudatum, the effects of caffeine, ruthenium red and lanthanum (LaCl3) on thigmotaxis were examined. Thigmotaxis in the CNR mutant, which lacks voltage-dependent Ca2+-channels in the ciliary membrane, was also examined. Ruthenium red and LaCl3 suppressed thigmotaxis inP. caudatum, while caffeine enhanced it. The CNR mutant showed hardly any thigmotaxis. It can be thought that an increase in Ca2+ influx and the intraciliary concentration of Ca2+ ions induces thigmotaxis inParamecium.  相似文献   

6.
We have explored the properties of a Ca2+-dependent cell-signalling pathway that becomes active when cultured equine sweat gland cells are stimulated with ATP. The ATP-regulated, Ca2+-influx pathway allowed Sr2+ to enter the cytoplasm but permitted only a minimal influx of Ba2+. Experiments in which cells were repeatedly stimulated with ATP suggested that Sr2+, but not Ba2+, could become incorporated into the agonist-sensitive, cytoplasmic Ca2+ store. Further evidence for this was provided by experiments using ionomycin, a Ca2+ ionophore which has no affinity for Sr2+.  相似文献   

7.
Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin stimulated (Ca2++Mg2+)ATPase and (Na++K+)ATPase activities in smooth muscle membranes separated by density gradient centrifugation suggests a plasmalemmal distribution of this (Ca2++Mg2+)ATPase. A phosphoprotein intermediate in smooth muscle which strongly resembles the corresponding phosphoprotein in sarcoplasmic reticulum of skeletal muscle may indicate the presence in smooth muscle of a similar type of Ca2+-transport ATPase.  相似文献   

8.
The dose-dependent effect of CGP 45715A on the LTD4-induced Ca2+ response of glomerular mesangial cells has been studied. Our results demonstrate that the LTD4-dependent increase in the cytosolic Ca2+ concentration primarily involves an InsP3-mediated release of Ca2+ from intracellular storage sites and to a minor extent an enhanced influx of Ca2+ through receptor-operated Ca2+ channels located in the plasma membrane. The action of CGP 45715A on the Ca2+ response is an inhibitory one and is convincingly explained by a displacement of LTD4 from its receptor site(s). The contractile effect of LTD4 on pulmonary smooth muscle is proposed to be mainly caused by a receptor-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate.  相似文献   

9.
Using a newly developed microcalorimetric approach to assess the rate of energy expenditure for intracellular [Ca2+] homeostasis in isolated muscles at rest, we found this was lower inmdx than in control mouse muscles, by 62% and 29% in soleus and extensor digitorum longus, respectively. Differences in total and Ca2+-dependent rates of specific heat production betweenmdx and control were enhanced during sustained, KCl-induced stimulation of energy dissipation. These results suggest that the low sacroplasmic energy status of dystrophic muscles is not due to any excessive energy expenditure for intracellular [Ca2+] homeostasis.  相似文献   

10.
Acetylcholine releases calcium from cytoplasmic stores and permits an influx of calcium in salivary acinar cells. The resultant rise in [Ca2+]i causes an increase in potassium permeability which is an important part of the secretory response. We have investigated the effects of 12-0-tetradecanoyl phorbol-13-acetate, a potent activator of protein kinase C, upon this regulation of potassium permeability in superfused pieces of rat submandibular salivary gland. This compound inhibited the initial [Ca2+]o-independent component of the response of acetylcholine but had no effect upon the subsequent [Ca2+]o-dependent phase. This compound does not, therefore, appear to inhibit receptor-regulated calcium influx.  相似文献   

11.
Summary Potassium movements were monitored in liver mitochondria from control and alloxan diabetic rats with a cationic electrode. There was net accumulation of K+ after Ca2+ addition to the mitochondria with the diabetic but not with the control.  相似文献   

12.
Summary The stimulatory effect of nitro-compounds on arterial and hepatic guanylate cyclase became significantly depressed at 0.2 M and higher concentration of free Ca2+. The basal enzyme activity proved to be Ca2+-independent.This study was supported by the Anton Dreher-Foundation for Medical Research.  相似文献   

13.
Summary Exogenous cyclic AMP (cAMP) inhibits the Na+, K+-cotransport system and stimulates the Na+, K+-pump and Na+, Ca2+ exchange in mouse macrophages. These effects are enhanced by inhibition of phosphodiesterase with methylisobutylxanthine (MIX). MIX alone showed little or no effect. A similar response was observed after stimulation of endogenous production of cAMP by isoproterenol.  相似文献   

14.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

15.
Summary Malignant hyperthermia (MH), a genetically inherited disorder of skeletal muscle, is due to molecular defect in membrane permeability. The alteration in membrane permeability is suggested to be due to enhanced phospholipase A2 activity which is responsible for the increased level in sarcoplasmic Ca2+. The excess Ca2+ is responsible for muscle hyper-rigidity and enhanced rate of glycolysis, resulting in a rapid rate of lactic acid production and a low pH in MH muscle.  相似文献   

16.
Summary Studies have implicated Ca++ in the actions of ethanol at many biochemical levels. Calcium as a major intracellular messenger in the central nervous system is involved in many processes, including protein phosphorylation enzyme activation and secretion of hormones and neurotransmitters. The control of intracellular calcium, therefore, represents a major step by which neuronal cells regulate their activities. The present review focuses on three primary areas which influence intracellular calcium levels; voltage-dependent Ca++ channels, receptor-mediated inositol phospholipid hydrolysis, and Ca++/Mg++-ATPase, the high affinity membrane Ca++ pump.Current research suggests that a subtype of the voltage-dependent Ca++ channel, the dihydropyridine-sensitive Ca++ channel, is uniquely sensitive to acute and chronic ethanol treatment. Acute exposure inhibits, while chronic ethanol exposure increases45Ca++-influx and [3H]dihydropyridine receptor binding sites. In addition, acute and chronic exposure to ethanol inhibits, then increases Ca++/Mg++-ATPase activity in neuronal membranes. Changes in Ca++ channel and Ca++/Mg++-ATPase activity following chronic ethanol may occur as an adaptation process to increase Ca++ availability for intracellular processes. Since receptor-dependent inositol phospholipid hydrolysis is enhanced after chronic ethanol treatment, subsequent activation of protein kinase-C may also be involved in the adaptation process and may indicate increased coupling for receptor-dependent changes in Ca++/Mg++-ATPase activity.The increased sensitivity of three Ca++-dependent processes suggest that adaptation to chronic ethanol exposure may involve coupling of one or more of these processes to receptor-mediated events.  相似文献   

17.
Calcium (Ca2+) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Ca2+ influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca2+ from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca2+. Inside the cell, Ca2+ is controlled by the buffering action of cytosolic Ca2+-binding proteins and by its uptake and release by mitochondria. The uptake of Ca2+ in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca2+ from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na+/Ca2+ exchanger in the plasma membrane also participates in the control of neuronal Ca2+. The impaired ability of neurons to maintain an adequate energy level may impact Ca2+ signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca2+ signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca2+ signaling in the most important neurological disorders will then be considered.  相似文献   

18.
Activation of δ-opioid receptors (DOR) attenuates anoxic K+ leakage and protects cortical neurons from anoxic insults by inhibiting Na+ influx. It is unknown, however, which pathway(s) that mediates the Na+ influx is the target of DOR signal. In the present work, we found that, in the cortex, (1) DOR protection was largely dependent on the inhibition of anoxic Na+ influxes mediated by voltage-gated Na+ channels; (2) DOR activation inhibited Na+ influx mediated by ionotropic glutamate N-methyl-D-aspartate (NMDA) receptors, but not that by non-NMDA receptors, although both played a role in anoxic K+ derangement; and (3) DOR activation had little effect on Na+/Ca2+ exchanger-based response to anoxia. We conclude that DOR activation attenuates anoxic K+ derangement by restricting Na+ influx mediated by Na+ channels and NMDA receptors, and that non-NMDA receptors and Na+/Ca2+ exchangers, although involved in anoxic K+ derangement in certain degrees, are less likely the targets of DOR signal. Received 26 November 2008; received after revision 26 December 2008; accepted 13 January 2009  相似文献   

19.
Guanylate cyclase activating protein 1 (GCAP1) is a neuronal Ca2+ sensor (NCS) that regulates the activation of rod outer segment guanylate cyclases (ROS-GCs) in photoreceptors. In this study, we investigated the Ca2+-induced effects on the conformation and the thermal stability of four GCAP1 variants associated with hereditary human cone dystrophies. Ca2+ binding stabilized the conformation of all the GCAP1 variants independent of myristoylation. The myristoylated wild-type GCAP1 was found to have the highest Ca2+ affinity and thermal stability, whereas all the mutants showed decreased Ca2+ affinity and significantly lower thermal stability in both apo and Ca2+-loaded forms. No apparent cooperativity of Ca2+ binding was detected for any variant. Finally, the nonmyristoylated mutants were still capable of activating ROS-GC1, but the measured cyclase activity was shifted toward high, nonphysiological Ca2+ concentrations. Thus, we conclude that distorted Ca2+-sensor properties could lead to cone dysfunction.  相似文献   

20.
Summary Morphine inhibited the noradrenaline release from slices of rat brain cortex induced by introduction of Ca2+ ions after superfusion with Ca2+-free, K+-rich solution. The degree of inhibition was inversely related to the Ca2+ concentration used for stimulation.Acknowledgment. We thank Mrs G. Thielecke and Miss G. Werthmann for technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号