首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响。  相似文献   

2.
二甲醚-氢气-空气混合气预混燃烧的实验研究   总被引:1,自引:1,他引:0  
在定容燃烧弹中,研究了不同燃空当量比、掺氢比和初始压力下的二甲醚-氢气-空气预混合气的一系列层流燃烧特性参数,并且系统地分析了当量比、掺氢比和初始压力对燃烧的影响.结果表明:随着掺氢比的增大,火焰传播速率、层流燃烧速率、燃烧压力升高率和质量燃烧速率都明显增大,火焰发展期和燃烧持续期则随之缩短;当掺氢比较低时,随着当量比的升高,马克斯坦长度不断递减,即稀混合气的燃烧稳定性更高;当掺氢比较高时,随着当量比的升高,马克斯坦长度不断递增,即浓混合气的燃烧稳定性更高;最高燃烧压力随着初始压力的升高而升高,受掺氢比的影响相对较小.  相似文献   

3.
高温高压条件下甲醇-空气-稀释气层流燃烧速度测定   总被引:1,自引:0,他引:1  
利用高速纹影摄像法在定容燃烧弹内研究了不同初始压力、初始温度、气体稀释度和燃空当量比下甲醇一空气混合气预混层流燃烧速度和Markstein长度,分析了火焰拉伸对火焰传播速度的影响.基于火焰纹影照片,分析了火焰前锋面形态随混合气初始状态的变化规律.结果表明:甲醇-空气混合气层流燃烧速度随初始压力的增加而降低,随初始温度的增加而增加.氮气作为稀释气添加后,混合气的燃烧速度随稀释度增加而减小.Markstein长度值随初始压力增加而减小,随初始温度增加而减小,随气体稀释度增加而增大.随初始压力增加,火焰前锋面不稳定性增加,皱褶火焰前锋面出现的时刻提前.  相似文献   

4.
为研究直流电场及其极性对火焰传播行为的影响,利用高速摄像法和球形扩展火焰理论在定容燃烧弹上展开了正负直流电场作用下预混CH4/O2/N2火焰传播规律的试验研究.试验结果表明:对于化学计量空燃比混合气,施加电场后球形火焰面在水平方向上被拉伸,拉伸火焰传播速率、无拉伸层流燃烧速率以及马克斯坦长度均随着输入电压幅值的增大而增大,且负电场比正电场的作用更加显著.当输入电压为-5 kV与5 kV时,火焰传播速率相对于未加电场时分别增加了10.85%和5.66%,而层流燃烧速率则分别增加了13.13%和6.98%.因此,电场能有效促进火焰传播,改善燃烧以及提高燃烧稳定性.  相似文献   

5.
在定容燃烧弹中采用高速纹影摄像方法研究了不同当量比(φ=0.8~1.4)和初始温度(373K,423 K,473 K)下高辛烷值燃料-空气预混合气的层流燃烧特性,分析了当量比和初始温度对燃烧的影响.结果表明:拉伸火焰传播速率、无拉伸火焰传播速率、拉伸层流燃烧速率和无拉伸层流燃烧速率随着初始温度的增加而增加,无拉伸层流燃烧速率在φ=1.0~1.1附近有最大值;马克斯坦长度随初始温度的增加而增加,随当量比的增加而减小;燃烧压力峰值与混合气质量的比值在φ=1.1时出现最大值,初始温度增加,该比值相应增加.  相似文献   

6.
基于GRI-Mech 3.0详细化学反应机理,利用预混燃烧模型(PREMIX Code)研究了甲烷-空气-稀释气层流预混火焰燃烧特性及火焰结构.重点探讨了不同化学当量比(0.5~1.5)、初始压力(0.05~0.40 MPa)、稀释气体种类(N2,CO2及H2O)和稀释摩尔比(0~0.35)对甲烷-空气-稀释气混合气层...  相似文献   

7.
针对高甲烷含量天然气在实际发动机中燃烧温度过高、NOx排放过高的问题,利用定容燃烧弹实验和Chemkin软件模拟计算相结合的方法,对其预混层流燃烧特性进行研究,分析了不同稀释比和稀释气种类(N2和CO2)对混合气的层流火焰速度、NOx摩尔分数、燃烧压力和燃烧期等燃烧特性参数的影响。研究表明,层流火焰速度、质量燃烧率和热释放率均随稀释比的增加而减小,稀释气添加导致火焰温度下降,从而降低了NOx摩尔分数。Markstein长度和火焰厚度都随稀释比的增加而增加,火焰流动不稳定性得到抑制。添加稀释气导致燃烧压力峰值和压力升高率降低、燃烧期延长,与N2相比,CO2对混合气燃烧特性的稀释效果更加显著,从而为通过废气再循环技术路径降低高甲烷含量天然气发动机燃烧温度,控制NOx排放提供了理论指导。  相似文献   

8.
液化石油气-氢气-空气层流燃烧特性的研究   总被引:1,自引:1,他引:0  
研究了定容燃烧弹中不同过量空气系数(0.6~1.4)、掺氢比例(0~60%)和初始压力(0.081~0.124 MPa)下的液化石油气-氢气-空气混合气的层流燃烧现象,分析了过量空气系数、掺氢比例、初始压力等因素对规范化质量燃烧速率、燃烧持续期等层流燃烧特性参数的影响.研究表明:当过量空气系数在0.8~1.0范围内取值时,混合气的规范化质量燃烧速率和压力升高速率取最大值.随着初始压力的降低,规范化质量燃烧速率升高,燃烧持续期缩短,浓燃和稀燃更加明显;随着掺氢比例的增加,压力升高速率增加,混合气的规范化质量燃烧速率增加,燃烧持续期显著缩短,短的燃烧持续期所对应的过量空气系数范围变宽.  相似文献   

9.
针对稀燃条件下燃烧存在燃烧速率慢、循环变动严重的问题,研究了定容燃烧弹内点、柱、网3种电极结构下的电场对火焰形状、火焰传播距离及速率、燃烧压力的影响。结果表明:3种电极下加载电压,火焰形状均发生变形且在水平方向被拉伸;3种电极中网电极下的电场对火焰的促进作用最大;混合气越稀,火焰在电场中停留的时间越长,电场对火焰的影响越大。过量空气系数为1.2、1.4、1.6,网电极在加载-10kV电压时,平均火焰传播速率比未加载电压时分别提高了66.82%、112.42%、126.16%,相对燃烧压力增大率的最大值分别为71.60%、113.55%、114.97%。  相似文献   

10.
为了研究层流预混火焰中二甲醚的氧化分解路径,利用同步辐射真空紫外光电离及分子束取样质谱技术,测量了二甲醚浓燃火焰主要物种及主要中间物种的摩尔分数空间分布曲线。基于典型的二甲醚燃烧化学反应机理和CHEMKIN化学反应动力学模拟软件,对相同条件的一维平面火焰进行了数值模拟,结合试验及数值模拟结果对二甲醚的氧化分解路径进行了分析。研究结果表明:甲醛和甲基是二甲醚燃烧过程中最主要的C1中间物种,乙烯和乙炔是主要C2中间物种;浓燃条件下,二甲醚主要通过脱氢反应消耗,使二甲醚产生脱氢反应的最主要的原子是H,其次是OH、CH3和O;二甲醚的脱氢产物甲氧基甲基极不稳定,在火焰中一经生成马上就被消耗掉,试验中没有观测到它的存在;CH2O脱氢生成HCO,HCO脱氢生成CO,CO再被OH氧化成CO2;反应CO+OHCO2+H是火焰后期生成CO2的主要方式。  相似文献   

11.
利用同步辐射真空紫外光电离结合分子束取样质谱技术,研究了当量比为1.5,燃料掺氢体积分数为0%、40%和80%的二甲醚/氢气/氧气/氩气低压层流预混火焰。测量了火焰温度曲线和火焰物种的摩尔分数分布曲线,分析了掺氢对火焰温度、燃烧主要产物CO和CO2以及主要燃烧中间物CH2O、CH3、C2H2和C2H4的影响。研究结果表明:在低压预混二甲醚/氢气/氧气/氩气火焰中,随着掺氢比的增大,火焰温度逐渐降低,火焰中CO、CO2、CH2O、CH3、C2H2和C2H4的摩尔分数逐渐减小;在后火焰区,CO与CO2的摩尔分数比随着掺氢比的增大而减小,说明掺氢有利于CO氧化成CO2,促进二甲醚完全燃烧。  相似文献   

12.
利用CHEMKIN PRO软件分别探究了在标准大气压、393 K条件下, N_2、CO_2和H_2O三种稀释成分对天然气层流燃烧速度的影响规律,并进行了化学动力学分析.结果表明,天然气的层流燃烧速度随稀释气掺混量的增大逐渐降低,其中CO_2对层流燃烧速度的影响最为显著.自由基OH、H和O的浓度随稀释气掺混量的增大而逐渐减小,并且,天然气层流燃烧速度与OH和H的浓度之和密切相关.此外,通过设计几种虚拟成分分离了稀释气对天然气层流燃烧速度影响的物理效应(包括稀释效应与吸热效应)与化学效应,结果显示,稀释气体主要通过吸热效应对天然气的层流燃烧速度产生影响.在不考虑NO_x生成情况下,N_2影响天然气层流燃烧速度的主要方式是稀释与吸热;CO_2的化学效应随着稀释比增大逐渐减小,稀释与吸热效应则有所增强;不同稀释比下,H_2O的三种效应贡献率基本不变.  相似文献   

13.
为了改善天然气燃烧速率慢、稀燃条件下着火延迟以及火焰稳定性差等不足,在常温、初始压力为3×97kPa下,研究分析了定容燃烧弹中低频交流电场对甲烷/空气预混稀燃火焰形状、火焰传播速度、燃烧压力相关特性参数等的影响。结果表明:与未加载交流电压相比,加载10~100Hz交流电压的火焰在水平方向均发生拉伸变形,电压频率越小,拉伸变形越明显,在15 Hz附近时变化最明显;加载电压后火焰传播速度增大,且随电压频率的减小先增大后减小,在接近15 Hz时最大;交流电场作用下燃烧压力峰值增大,压力峰值到达时间、初始燃烧期和主燃烧期均缩短;随着电压频率的减小,燃烧压力峰值与火焰传播速度变化相一致,而压力峰值到达时间的变化则相反,但均在15Hz附近其绝对值出现最大值,比未加载电压时分别增加了19.90%、-42.23%。  相似文献   

14.
利用OH-PLIF方法获得了当量比分别为0.6、0.8、1.0、1.2,CO2或N2稀释比分别为3%、5%时,合成气/空气/稀释气本生灯预混层流火焰中OH基的分布,结合STAR-CD模拟计算所得火焰中的流场和组分分布进一步分析了火焰结构。研究结果表明:随着混合气当量比的增加,OH基高浓度分布区域由火焰前锋面附近转移到火焰边缘;混合气较稀时,火焰前锋面附近OH基浓度最高且沿已燃区方向逐步递减,火焰顶端处OH基浓度减小,模拟计算结果显示火焰顶端并未发生燃料泄漏;化学当量比下,火焰前锋面附近和火焰边缘区域OH基浓度较高,火焰前锋面附近出现了预混燃烧区和扩散燃烧区,该区域中OH基呈现"W"型分布;受N2和CO2稀释的影响,混合气层流燃烧速度降低,火焰前锋面拉长,CO2对火焰结构的影响比N2更显著;火焰前锋面附近OH基浓度减小,扩散燃烧区OH基浓度增大,说明火焰的预混燃烧有所减弱,扩散燃烧有所加强。  相似文献   

15.
利用本生灯-纹影系统实验研究含有CO2,N2的掺氢天然气层流预混火焰传播速度,并应用GRI-3.0机理模拟计算不同组分预混燃气绝热火焰温度、敏感性系数及重要自由基浓度等,详细讨论CO2,N2的稀释效应.研究表明,GRI-3.0机理能较好地预测掺氢天然气层流预混火焰传播速度;CO2,N2稀释组分会显著抑制掺氢天然气层流预混火焰速度及其绝热火焰温度;与N2相比,CO2不仅具有较强的热力学效应,且随着CO2稀释比的增加,火焰中重要自由基H浓度显著减少,抑制氧化反应H+O2O+OH对燃烧的主导促进效应,使预混燃料的层流火焰传播速度显著降低.  相似文献   

16.
将层流火焰消耗速度的概念与反应进程变量(progress variable)的定义相结合,给出了积分层流燃烧速度的广义定义.在准一维稳态系统中,分析了积分层流燃烧速度与未燃气体位移速度和已燃气体位移速度之间的关系.对甲烷空气和丙烷空气拉伸层流预混火焰在常温常压下进行了数值计算,研究不同当量比时,火焰拉伸率对层流燃烧速度的影响.通过火焰前锋放热率的积分层流燃烧速度和燃料消耗率的积分层流燃烧速度进行比较,结果表明,低拉伸火焰的马克斯坦数(Markstein number)与渐进分析一致,也与球形火焰获得的实验数据吻合.  相似文献   

17.
为了解微小Swiss-roll燃烧室的工作特点,用平板Swiss-roll燃烧器进行CH4/空气预混气的燃烧实验,获得了不同甲烷流量时燃烧器的熄火极限,分析了燃烧产物成分.结果表明:该燃烧器能够实现CH4/空气的稳定燃烧,并确保火焰位于燃烧器的中心;当存在回热时,未燃气体被加热,燃烧器的可燃极限范围增大,但上下极限并不对称,富燃极限比较小,而富氧极限比较大,预混气体能够在较大的空气流量下稳定燃烧;燃烧器最高的壁面温度在理论当量比附近,且随着空气流量的增大,火焰温度逐渐下降;空气过量时甲烷可实现较完全燃烧,空气不足时过剩的甲烷转化为H2和CO,减小了燃烧放热量,使燃烧器容易熄火.  相似文献   

18.
宽燃料适应性是先进燃气轮机的重要设计要求之一,燃用来源广泛的富氢燃料气是燃气轮机未来发展的重要方向,因此富氢燃料气的湍流火焰熄火特性应成为燃气轮机燃烧室设计过程中重点关注的问题。该文通过使用优化的对冲火焰实验方法和数值模拟计算方法,比较了2种典型的富氢燃料气在层流和湍流燃烧状态下的熄灭拉伸率,并分析了贫燃侧2种燃料预混火焰熄灭拉伸率差异的主要原因。结果表明:在该文研究的工况范围内,采用数值模拟方法可较好地预测层流和湍流火焰的熄灭拉伸率。在层流燃烧状态下,火焰锋面内活性自由基H、 O和OH的物质的量浓度相对更高的富氢燃料气,其火焰锋面内部的关键化学反应速率和释放热量的速度更高,因此能抵抗更高程度的火焰拉伸形变。湍流作用加快了火焰锋面内部的反应速率,但同时会使热量更快地从火焰锋面内部向外输运,相比于层流火焰,湍流火焰熄灭拉伸率降低。  相似文献   

19.
利用定容燃烧弹试验和化学反应动力学数值模拟相结合的方法,研究了不同氢气掺混比下的二甲醚-氢气-空气预混层流火焰特性,分析了氢气掺混量(掺氢比)对二甲醚预混层流燃烧速度、绝热火焰温度以及火焰中主要活化自由基的影响。试验结果显示:随掺氢比的增大,混合气体的层流燃烧速度、绝热火焰温度逐渐增大,且在掺氢比小于80%时增大幅度较小,在掺氢比大于80%时,增大幅度较大;掺氢比较小时,混合燃料燃烧初期,火焰中会有一定量的氢气生成,说明混合燃料燃烧过程中,二甲醚会被优先氧化分解,在掺氢比较小的混合燃料燃烧过程中二甲醚的氧化分解占主导地位;随掺氢比的增大,火焰中自由基的浓度逐渐增大,大掺氢比时H自由基浓度增大幅度更为明显,H自由基浓度随掺氢比增大的剧增导致层流燃烧速度的剧增。  相似文献   

20.
基于定容燃烧可视化光学平台,模拟缸内直喷(GDI)汽油机缸内燃烧环境,研究汽油在O2/CO2氛围和空气氛围下均质燃烧特性以及火焰传播特性,研究结果表明当循环喷油量一定时,相比于空气氛围,汽油在氧气浓度为40%的O2/CO2氛围下燃烧的压力升高率提高了1.8倍,着火落后期和明显燃烧期缩短近50%,放热率的峰值增大了近1倍,且峰值相位提前。过量空气系数对汽油在O2/CO2氛围下燃烧的影响较大,化学当量比时放热率的峰值达到最大,随着过量空气系数增大,最大燃烧压力增大,最大压力升高率下降,放热率的峰值下降,且峰值相位后移,反应速率下降,明显燃烧期增大,且火焰传播速度明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号