首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在单轴阶段加载条件下,对取自闽南地区的闪长岩岩样进行了不同方向上纵波传播速度的测试,首先根据实验结果总结出不同方向波速在岩石破裂过程中的变化规律,然后基于应力微小变化范围内波速变化与应力遵循线性关系的假设构建波速-应力关系模型,最后通过多参数分段拟合方式求解模型待定系数。研究结果表明:微裂纹演化在方向上的不均匀导致不同方向波速变化规律的差异。平行于加载方向的波速在压密阶段快速上升,岩石破裂前的波速降不明显。而垂直于荷载方向的波速在压密阶段少量上升后在临近岩石破裂出现非常明显的波速降。波速-应力关系模型模型通过参数的变化可以准确的描述不同方向波速的变化过程,证明了模型的适用性。  相似文献   

2.
在单轴阶段加载条件下,对取自闽南地区的闪长岩岩样进行了不同方向上纵波传播速度的测试.首先根据实验结果总结出不同方向波速在岩石破裂过程中的变化规律,然后基于应力微小变化范围内波速与应力遵循线性关系的假设构建波速-应力关系模型,最后通过多参数分段拟合方式求解模型待定系数.研究结果表明:平行于加载方向的波速在压密阶段快速上升,岩石破裂前的波速降不明显.而垂直于荷载方向的波速在压密阶段少量上升后在临近岩石破裂出现非常明显的波速降.波速-应力关系模型通过参数的变化可以准确地描述不同方向波速的变化过程,证明了模型的适用性.  相似文献   

3.
为探求冲击煤层煤样在单轴加载过程中的红外变化规律,利用红外热像仪对煤样进行单轴加载红外监测,取剪切破坏和劈裂破坏两种试样,对破坏过程进行红外热像实验分析。结果表明:冲击煤层煤样AIRT(红外辐射温度)和应力-应变曲线的对应关系分为五个阶段,即下降(压密阶段)-上升(弹性阶段)-下降(塑性阶段)-上升(屈服阶段)-下降(破坏阶段);煤样破坏前期都曾出现一次相对较大的AIRT下降现象,下降AIRT依据试样的强度不同而不同;煤样剪切破坏过程比劈裂破坏过程高温区域明显;AIRT变化可以对煤样内、外部能量积聚与耗散进行较准确的趋势预测。  相似文献   

4.
声发射能量累积与煤岩损伤演化关系初探   总被引:1,自引:0,他引:1  
为了寻求煤及岩石在受载破坏过程中能量积累与应力应变之间的关系,分别对煤矿的煤和泥岩进行了单轴加载及声发射试验,得到了煤岩试样单轴加载试验过程中声发射能量累积、应力与应变之间的关系曲线。利用损伤力学基本原理和热力学定律,理论推导了煤岩损伤演化方程,进而得到损伤与声发射能量累积关系曲线,通过拟合损伤与声发射能量累积关系曲线初步推导得到了声发射能量累积与应力应变的理论关系,并通过试验结果验证了能量累积与应力应变关系。  相似文献   

5.
为降低和减少矿震所导致的事故和灾害,利用100KN液压万能试验压力机对原煤进行单调加载、分级加载、循环加载三种加载方式的单轴压缩试验.结果表明:不同加载方式下原煤震动信号的变化特征各不相同;原煤在加载过程中有少量微震信号,当加载到原煤破坏时微震信号最为明显,可以根据微震信号的强弱来判断煤岩的受力状况;三种加载方式下,煤样在破坏失稳前震动信号均存在一段沉寂区.  相似文献   

6.
温度的交替性变化对岩体内部损伤加剧,岩石损伤的积累与发展,导致高寒区岩土工程发生破坏失稳。选取花岗岩、砂岩进行不同温度循环条件下的单轴压缩试验,分析花岗岩抗压强度、弹性模量、抗拉强度与温度循环次数的变化关系;对经历不同温度循环次数的岩石试件进行纵波波速测定,并引入纵波波速劣化度,定量分析温度循环对岩石的损伤。结果表明:花岗岩抗压强度、弹性模量、抗拉强度逐渐减小,且与温度循环次数拟合关系可表征为负指数变化关系;温度循环条件下,岩石试件的纵波波速随循环次数的增大而减小,温度循环初期,波速值变化速率较快,后期变化趋势基本平缓。试件纵波波速劣化度最大可达15.02%,表明温度循环对岩石产生明显损伤。研究为寒区岩土工程的稳定性分析提供试验依据,具有较高的参考价值。  相似文献   

7.
温度的交替性变化对岩体内部损伤加剧,岩石损伤的积累与发展,导致高寒区岩土工程发生破坏失稳。选取花岗岩、砂岩进行不同温度循环条件下的单轴压缩试验,分析花岗岩抗压强度、弹性模量、抗拉强度与温度循环次数的变化关系;对经历不同温度循环次数的岩石试件进行纵波波速测定;并引入纵波波速劣化度,定量分析温度循环对岩石的损伤。结果表明,花岗岩抗压强度、弹性模量、抗拉强度逐渐减小,且与温度循环次数拟合关系可表征为负指数变化关系;温度循环条件下,岩石试件的纵波波速随循环次数的增大而减小,温度循环初期,波速值变化速率较快,后期变化趋势基本平缓。试件纵波波速劣化度最大可达15.02%,表明温度循环对岩石产生明显损伤。研究为寒区岩土工程的稳定性分析提供试验依据,具有较高的参考价值。  相似文献   

8.
为了探究应变速率对节理岩体裂纹扩展形态和贯通破坏的影响,提出在室内制作含裂隙的红砂岩试样,采用不同加载速率进行单轴加载试验,观察裂隙起裂、贯通、破坏的全过程,并在物理试验基础上利用数值分析软件对结果进行分析和验证。结果表明:随着加载速率的增加,试样的峰值强度增加,试样发生应力强度跌落时的应变也有一定的增长;裂隙的扩展方式不局限于沿着试件高度方向开展,有部分裂隙发生横向方向的扩展和贯通,导致试样逐渐从局部破坏形式向整体破坏形式发展;裂隙强度在单轴加载时伴随裂隙倾角和加载速率的增加而变大,裂隙贯通强度对裂隙倾角的变化更敏感。  相似文献   

9.
首先利用非金属超声波仪器设备测量风化灰岩试样的纵波波速和横波波速,然后对试样开展单轴静抗压试验,对试验结果进行统计分析,得到纵波波速与横波波速和岩石单轴静抗压强度、静弹性模量及静泊松比之间的关系,并给出相应的拟合关系式.研究结果表明:纵波波速和单轴静抗压强度、纵波波速和静弹性模量之间具有良好的线性正相关性;横波波速和单轴静抗压强度、横波波速和静弹性模量之间也具有线性正相关性,但相关性不如纵波波速显著;纵波波速和静泊松比、横波波速与和静泊松比之间的相关性差.对于实际工程应用,可以根据给出的拟合关系式和纵波波速测量结果预测灰岩的单轴静抗压强度与静弹性模量.  相似文献   

10.
为揭示倾角对层状砂岩力学特性与破裂特征的影响,进行0°,30°,45°,60°和90°等5种倾角的单轴压缩试验,分析倾角对试样物理力学特性和破裂模式的影响,并结合声发射监测,分析微裂纹时空演化规律。研究结果表明:1)不同层理角度试样应力-应变曲线均经历压密阶段、弹性阶段、屈服阶段和峰后破坏阶段,各阶段区分明显。弹性模量与纵波波速均随层理角度增大而增大,而单轴抗压强度先变小然后增大,曲线整体呈现出"U"形,在层理倾角60°时为最低值;2)倾角从0°增大到90°时,破坏模式由"穿切层理面的劈裂型剪切破坏"转变"复合张剪破坏"再到"剪切滑移破坏",最后转变为"劈裂张拉破坏";3)试样压密段几乎没有声发射事件,在弹性段声发射事件数逐步增加,当加载到峰值强度时,事件数剧烈增加,峰后破坏阶段事件进一步累积,声发射事件阶段变化与应力-应变曲线描述的变形破坏阶段吻合,且声发射事件空间分布与宏观破裂形态基本一致;4)矩张量反演的震源类型T-k值点分布在不同阶段的变化规律反映了剪切、张拉、混合破裂比例变化。试验用层状砂岩横观各向同性性质明显,力学性质随着层理倾角变化而变化,层理倾角变化对试样破坏模式影响明显。  相似文献   

11.
根据多孔介质混合物理论,考虑土颗粒间的吸应力,建立一类非饱和土三相波动模型.基于VG模型得到非饱和土中体波的传播波速和衰减的解析表达式,并且与已有的试验数据相比较,验证了理论分析结果的有效性.通过参数分析探讨非饱和土中体波的相速度和衰减与频率、饱和度和吸应力等影响因素的关系.结果表明:非饱和土中存在4种体波,即3种纵波和1种横波;各种体波均具有频散性和衰减性,其中波速P_1波最大,S波次之,P_3波最小,衰减大小正好相反;饱和度以及吸应力对非饱和土中波的传播有着显著的影响.  相似文献   

12.
为了探究微波照射下花岗岩强度损伤规律,降低地下工程掘进的开挖难度,选取河北省平山县花岗岩试件,分别开展了微波照射后的单轴抗压强度试验和超声波纵波波速试验.分析了各个试验条件下的应力-应变曲线、峰值应力-峰值应变曲线和超声波纵波波速特征.对比研究了不同照射参数下花岗岩纵波波速规律、峰值应力强度损伤规律和弹性模量强度损伤规...  相似文献   

13.
针对燕山期的蚀变闪长岩静动态基础力学参数缺乏的问题.采用现场取样、现场试验及实验室实验的方法,分别对闪长岩岩石样本进行了密度测试、点载荷仪的点载荷试验、压力机的单轴抗压强度试验和声波测试仪的纵横波测试试验.得到了该燕山期蚀变闪长岩的密度为2 848 kg/m3、点载荷强度为7.12 MPa,单轴抗压强度为140.68 MPa,纵波平均波速为4 797 m/s,横波平均波速为2 705 m/s,并在此试验数据基础上运用弹性波理论计算公式得出了该闪长岩试件的动弹性模量52.8GPa和动泊松比0.267.该试验结果为制定井筒爆破方案设计及确定脆性岩石材料本构模型参数提供参考数据.  相似文献   

14.
为了探讨应力历史对激光超声技术检测混凝土应力状况的影响,应用声弹性技术原理,开展了基于激光超声的混凝土试件单轴循环加载试验,分析了应力历史对声弹性效应的影响。试验结果表明,多次循环荷载作用后瑞利波速度与应力在荷载循环阶段表现出稳定的正比例关系。由实测瑞利波相对波速与应力拟合得到的声弹性系数可用于计算混凝土试件绝对应力,计算误差受历史应力影响,声弹性公式的应用表现出一定的局限性。根据试件从无应力状态重新加载直至破坏状态这一阶段非绝对线性的波速—应力曲线,利用70%的极限应力定义了混凝土构件的安全系数并构建了安全系数与应力状态的模型,提出了一种基于激光超声的混凝土应力状况判别方法,对混凝土绝对应力的计算结果加以补充判断,为混凝土应力状况的检测与评价提供参考。  相似文献   

15.
为了探索碳酸(H2CO3)对页岩酸化作用引起的声学特性变化特征,以修武盆地海相页岩为研究对象,通过超声波透射试验方法研究了页岩试样被H2CO3处置后的时域信号、频域信号、波速、衰减系数等特征。结果表明:页岩试样被H2CO3处置后,超声波纵波和横波在页岩中的传播时间延长,纵波与横波幅值均呈现明显的下降特征;超声波频域内最大振幅下降,主频向低频方向发生偏移,部分页岩试样主频发生畸变;超声波纵波与横波波速均下降,纵波与横波衰减系数均增大。页岩试样被H2CO3处置后呈现的声波特性变化特征,反映出H2CO3酸化作用导致页岩孔隙度增大或者产生了破坏裂隙。  相似文献   

16.
复杂应力状态下岩石弹性波传播特性的研究   总被引:1,自引:2,他引:1  
本文以探讨地下岩体处于三向不同应力状态下其内部弹性波的传播规律为目的,研究了两种不同致密程度的岩石(沙岩、灰岩),在单轴压力和三轴不同压力下,弹性波的传播特性和波速与应力的关系。结果表明,不同应力状态下岩石的弹性波速随应力的变化阶段与应变随应力的变化阶段大致相同,可分为三个变化阶段;对于处于弹性应力状态下的岩石,应力与弹性波速的关系可用不同的依赖系数线性表示。同时,对用弹性波法确定岩体地应力及水平构造应力进行了探讨。  相似文献   

17.
珊瑚礁灰岩是一种特殊的岩土类型,由于其物质组成、结构和发育环境的特殊性,导致其具有独特的物理力学特性.文章通过对西沙群岛珊瑚礁灰岩的室内物理力学特性展开试验,设定试验流程,分析珊瑚礁灰岩的纵波波速试验、密度试验、孔隙率试验及单轴抗压强度试验等结果,采用回归分析方法,提出珊瑚礁灰岩岩块密度ρ与纵波波速V_P、孔隙率n与干燥波速V_P以及单轴抗压强度R与岩块纵波波速V_P的回归方程.  相似文献   

18.
岩石加载过程声波波速变化规律实验研究   总被引:7,自引:0,他引:7  
通过对花岗岩、片麻岩、大理岩和砂岩进行加载,探寻岩石波速随应力变化的响应特征.实验结果表明:花岗岩和片麻岩在线弹性加载阶段,波速-应力呈线性上升;波速达到峰值之后,波速-应力为二次函数非线性变化,再继续加载则岩样发生破坏.大理岩及砂岩在整个加载过程中波速基本保持恒定.依据成岩类型将波速变化分为两种类型:Ⅰ型,波速线性增加—峰值波速—缓慢下降—突然下降(破坏);Ⅱ型,波速不变—突然下降(破坏).在循环荷载作用下,岩石在线弹性加载阶段,波速呈线性上升;当增加到一定载荷,波速突然下降,岩样发生破坏.以上研究表明,在线弹性加载阶段,波速增加主要是密度变化引起的,裂纹萌生、扩展、贯通直接影响波速随应力的...  相似文献   

19.
不同尺寸混凝土试件受压状态下超声波传播特性研究   总被引:8,自引:0,他引:8  
研究了不同尺寸混凝土试件在单轴压应力作用下,超声波波速的变化规律.试验所用试件有3种:采用大坝原级配最大骨料粒径为80 mm的棱柱体试件以及相应的湿筛混凝土试件,尺寸分别为25 cm×25 cm×50 cm、15 cm×15 cm×30 cm、10 cm×10 cm×20 cm.通过试验首先得到了加载过程中波速变化与应力水平的关系,然后基于超声波波速定义了损伤变量以评价加载过程中混凝土的损伤程度,并且根据试验提出了一种使用超声波法估测复杂应力下混凝土裂缝开展的方法.试验分析表明,混凝土内超声波衰减规律与骨料尺寸和数量以及试件尺寸等因素有关,所得结论对于评估大体积混凝土结构在复杂应力条件下损伤演变具有一定的应用价值.  相似文献   

20.
单轴压缩条件下预制裂隙类岩石材料实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究裂隙类岩石材料在单轴压缩条件下的力学性质及裂纹扩展规律,通过在试样中预埋铁片的方法,制备出含不同裂纹条数和裂纹倾角的裂隙类岩石材料;采用RYL-600剪切流变仪对试样进行以负荷控制方式进行单轴加载,并使用数码相机记录试样加载过程中裂纹的起裂、扩展和贯通过程.着重对60°×18条裂隙类岩石材料的实验结果进行详细分析,观察其轴向应力-轴向位移曲线,曲线呈现出3次明显的应力跌落阶段,结合试样在试验过程中的录像,将裂纹的扩展分为3个阶段.并且,通过FLAC3D数值模拟软件对60°×18条的试样进行数值模拟研究,获得了数值模拟实验加载过程中的轴向应力-轴向位移曲线和模型破坏切片图,分析其破坏方式和破坏模式,并与物理实验对比,两者吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号