首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
庄严 《科技信息》2008,(30):184-185
新型模糊自适应PSO与惯性权值线性递减PSO的测试结果表明,新型PSO在优化单峰函数的性能明显优于后者;对多峰函数的优化问题上,前者比后者具有更大寻找全局最优解的潜力。这些实验是对连续的函数空间的优化问题。为了考察新型模糊自适应PSO在解决组合优化一类离散问题的性能,我们通过对PSO的离散化,使用经典的TSP问题进行测试。  相似文献   

2.
为提高粒子群算法求解TSP(Travelling Salesman Problem)问题的性能, 在算法搜索初期, 将混合蛙跳算法和 粒子群算法相融合, 针对初始粒子群随意性大、 粒子分布不均的问题, 利用混合蛙跳算法的分组策略将种群分 组, 采用改进的蛙跳更新公式优化次优个体, 并抽取各层次个体得到新种群, 从而提高最优个体的获得速度; 在算法后期, 引入3 重交叉策略和基于疏密性的引导变异操作, 解决粒子多样性降低、 易陷入局部最优的问题。 利用改进算法求解 TSP 问题, 并与其他算法进行对比。 结果表明, 改进算法是有效的且性能优于其他算法。  相似文献   

3.
为克服标准粒子群算法搜索后期收敛速度慢、容易陷入局部最优的缺点,通过引进自适应惯性权重因子平衡标准粒子群优化算法的全局搜索和局部改良能力,同时设计了均匀分布变异和高斯分布变异相结合的粒子群混合纵向多变异策略,来提高算法摆脱局部极值和局部寻优的能力.根据提出的改进算法流程,针对公认的Sphere,Rastrigin,Griewank和Salomon四种标准测试函数进行了收敛精度和收敛速度的测试.测试结果表明,在标准粒子群、自适应权重粒子群、自适应变异粒子群和自适应混合多变异粒子群4种算法中,提出的新算法具有最好的全局最优值搜索能力和最稳定的全局收敛特性,且在提高收敛速度的同时,有效地避免了早熟收敛问题.  相似文献   

4.
简化的自适应粒子群优化算法   总被引:2,自引:0,他引:2  
对基本粒子群优化算法作了一些改进:通过去掉速度因子简化算法结构,引入指数下降形式的惯性权重,对全局极值进行自适应的变异操作,进而提出一种简化的带变异算子的自适应粒子群优化算法。通过与其他改进的粒子群算法的数值实验对比分析,表明提出的新算法能够有效地避免早熟收敛问题,并能较大幅度地提高收敛速度和收敛精度。  相似文献   

5.
为提高粒子群算法的寻优速度和精度,提出了一种改进的粒子群算法,新算法是在标准粒子群算法的基础上对个体极值作变异操作.通过三个基准函数的测试,结果表明新算法在收敛速度、收敛精度和全局寻优能力方面均明显优于其它几种粒子群算法.  相似文献   

6.
基于蚁群和粒子群优化的混合算法求解TSP问题   总被引:3,自引:1,他引:3  
提出了一种基于蚁群优化和粒子群优化的混合算法求解TSP(Traveling Salesm an Prob lem)问题。在应用蚁群算法对TSP问题的求解过程中,利用粒子群算法对蚁群系统的参数进行优化,其目的是提高蚁群系统的优化性能,使蚁群系统的参数不必靠人工经验或反复试验选取,而是通过粒子搜索自适应选取。  相似文献   

7.
针对标准粒子群算法(PSO)早熟收敛、进化后期收敛慢和精度较差等缺点,提出一种改进的自适应粒子群优化算法。该算法根据粒子的适应度值一致等价于粒子位置的特点,通过比较粒子适应度值与当前全局最优适应度值的差来自适应调整惯性权值,并按当前种群平均粒距对种群中部分粒子进行变异操作,增加种群多样性,使粒子跳出局部极值。通过几种典型函数的仿真实验表明,该算法在收敛速度和收敛精度上都比标准粒子群优化算法有明显的提高。  相似文献   

8.
一种改进粒子群算法在物流配送路径问题中的应用   总被引:1,自引:0,他引:1  
针对物流配送车辆路径优化的研究热点问题,在标准粒子群算法基础上,设计了一种自适应的变异粒子群算法,算法中的变异算子可随群体适应度方差自适应改变,从而打散聚焦于局部收敛点的粒子群.并针对多个车场多个车辆的配送路径问题设计一种新编码模式,减少了迭代次数.在MatLab 2011b平台下进行了仿真实验,证明了该算法在最优值、正确率和误差均值上都有较大改进.  相似文献   

9.
针对传统遗传算法存在的 "早熟"以及在后期搜索效率低的问题,分析了目前常见的几种种群早熟程度的评价指标,提出了一种新的种群"早熟"程度评价指标,并据此实现了一种改进的自适应遗传法算法.仿真结果表明,该算法不仅能加快遗传算法收敛速度,而且还能增强算法的稳定性.  相似文献   

10.
针对算法易早熟和收敛慢的缺点,提出了一种新的自适应变异离散粒子群算法。算法中的变异思想是一种确定性交异操作,能使算法中陷入局部极小区域的粒子通过变异行为进行全局寻优,从而克服算法易早熟的缺陷。  相似文献   

11.
提出一种新的自适应粒子群优化算法,以解决梯度法为基础的算法在进行多参数拟合时因各参数之间相关性较高而带来的拟合上的问题.该粒子群优化算法采用自适应变异和动态自适应调整搜索范围、惯性权重相结合的改进策略,数值模拟了将该算法应用于测量薄膜热物性时的多参数拟合,结果表明该算法是可行和有效的.  相似文献   

12.
一种改进的粒子群优化算法   总被引:2,自引:0,他引:2  
针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法.该算法将模拟退火算法的"上山性"引入粒子群算法中,同时为了增加种群的多样性,将交叉和变异算子也结合进去,形成了一种新的改进粒子群算法.比较了高斯变异和柯西变异这两种变异算子对改进算法的影响.改进算法对典型函数的优化计算结果表明,与基本粒子群算法相比,改进算法能够更加快速有效的收敛到全局最优解,而且采用柯西变异算子的改进算法的效果比采用高斯变异算子的效果要好.  相似文献   

13.
提出了一种改进的混沌粒子群优化混合算法.该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力.通过对3个标准函数进行测试,仿真结果表明该算法与差分进化粒子群优化(DEPSO)算法相比,全局搜索能力和抗早熟收敛性能大大提高.  相似文献   

14.
自适应变异的混合粒子群优化策略及其应用   总被引:5,自引:0,他引:5  
提出了一种新的基于群体自适应变异和个体退火操作的混合粒子群优化(HPSO)算法.该算法将模拟退火过程引入到粒子群优化(PSO)之中,以PSO作为主体,先随机产生初始群体,并开始随机搜索产生新的个体.同时,使用自适应变异操作进行个体变异,对进化过的个体进行退火操作,以调整和优化群体.与模拟退火算法和基本PSO算法相比,HPSO保持了基本PSO算法简单、容易实现的特点,又能进行自适应变异.复杂函数优化和旅行商组合优化问题的实例验证表明,所提算法的全局收敛性较好,提高了摆脱局部最优的能力,有效避免了基本PSO算法的早熟问题.  相似文献   

15.
为了改善旅行商(TSP)优化求解能力,对模拟退火与混合粒子群算法进行改进,引入了自适应寻优策略。交叉、变异的混合粒子群算法,易于陷入局部最优,而自适应的模拟退火算法可以跳出局部最优,进行全局寻优,所以两者的结合兼顾了全局和局部。该算法增加的自适应性寻优策略提供了判定粒子是否陷入局部极值的条件,并可借此以一定概率进行自适应寻优,增强了全局寻优能力。与混合粒子群算法实验结果对比,显示了本文算法的有效性。  相似文献   

16.
为了解决旅行商(TSP)不能够在多项式时间内求得最优解的问题,从仿生学的角度入手,重新设计了从问题域到算法域的编码和解码方法,应用"排列法"来初始化种群;并设计了两种染色体操作算子:顺序交换算子和合法交叉算子,保证了种群在进化过程中染色体的合法性;在种群进化选择方面,设计了一个新的更加仿生的选择算子——"灾难算子",并与经典算法的"轮盘赌"选择法相结合,作为改进算法的选择算子,进一步提高了算法的收敛速度。实验表明,改进后的遗传算法能更准确地找到最优解。  相似文献   

17.
王晴 《科技咨询导报》2011,(19):231-231
本文提出了求解旅行商问题(TSP)的一个改进的单亲遗传算法。首先,定义了距离系数的概念,并据此设计了一种新的贪心基因段交换算子;同时结合一个模拟退火和2OPT局部搜索技术来改进该算子;然后,在此基础上提出了一个求解旅行商问题的一个新的单亲遗传算法。计算机仿真结果表明,该算法是有效的。  相似文献   

18.
针对粒子群算法解决离散问题时惯性项效率较低的问题,提出一种基于最优置换的改进算法,利用最优置换序列修改了惯性项.通过用TSP问题库内的基准问题进行仿真实验,与标准遗传算法和典型的改进粒子群算法进行结果比较,证明了该改进是有效的,其中替换策略和逆转策略效果尤为明显.  相似文献   

19.
为保证在蜂窝移动通信网络中信道间最大程度的紧致分配,降低语音呼叫堵塞率和掉话率,提出了一种改进的混合免疫算法,并将其应用于动态信道分配中.该算法采用自适应的初始化种群、交叉和重组算子、改进的选择性变异技术和改进的疫苗接种方法.在话务量增加80%时,算法的堵塞率和掉话率分别为3.48%和1.90%,平均收敛代数仅为9.98次.仿真结果表明,改进后的算法有效地提高了收敛率,减少了算法收敛所需的运行代数;明显地降低了语音呼叫的堵塞率和掉话率,有更强的话务携带能力.  相似文献   

20.
 针对粒子群优化算法容易陷入局部极值,进化后期收敛速度慢、精度低等缺点,本文将粒子群优化算法与遗传算法相结合,在基本粒子群优化算法中引入了正态变异算子,提出了一种新的混合进化算法,新算法增加了种群的多样性,增强了算法的全局寻优能力,提高了算法的搜索效率。使用新算法对经典函数进行优化测试,结果表明,本算法保持了粒子群优化算法简捷快速、容易实现的特点;同时,正态变异算子的引入提升了算法后期的收敛速度与全局搜索能力。新的算法能够以更小的种群数和进化代数获得较好的优化能力,在克服陷入局部最优和收敛速度方面均优于基本粒子群优化算法、遗传算法以及加入混沌扰动的粒子群优化算法(CPSO)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号