首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solomon P  Vanden Bout P  Carilli C  Guelin M 《Nature》2003,426(6967):636-638
Observations of carbon monoxide emission in high-redshift (zeta > 2) galaxies indicate the presence of large amounts of molecular gas. Many of these galaxies contain an active galactic nucleus powered by accretion of gas onto a supermassive black hole, and a key question is whether their extremely high infrared luminosities result from the active galactic nucleus, from bursts of massive star formation (associated with the molecular gas), or both. In the Milky Way, high-mass stars form in the dense cores of interstellar molecular clouds, where gas densities are n(H2) > 10(5) cm(-3) (refs 1, 2). Recent surveys show that virtually all galactic sites of high-mass star formation have similarly high densities. The bulk of the cloud material traced by CO observations, however, is at a much lower density. For galaxies in the local Universe, the HCN molecule is an effective tracer of high-density molecular gas. Here we report observations of HCN emission from the infrared-luminous 'Cloverleaf' quasar (at a redshift zeta = 2.5579). The HCN line luminosity indicates the presence of 10 billion solar masses of very dense gas, an essential feature of an immense starburst, which contributes, together with the active galactic nucleus it harbours, to its high infrared luminosity.  相似文献   

2.
McKee CF  Tan JC 《Nature》2002,416(6876):59-61
Massive stars (with mass m* > 8 solar masses Mmiddle dot in circle) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t*f is determined by the conditions in the star's natal cloud, and is typically about 105yr. The corresponding mass accretion rate depends on the pressure within the cloud--which we relate to the gas surface density--and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from about 100M middle dot in circle protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.  相似文献   

3.
Li HB  Henning T 《Nature》2011,479(7374):499-501
The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds, thereby regulating cloud accumulation and fragmentation, and affecting the rate and efficiency of star formation. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds.  相似文献   

4.
Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.  相似文献   

5.
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.  相似文献   

6.
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.  相似文献   

7.
van Dokkum PG  Conroy C 《Nature》2010,468(7326):940-942
The stellar initial mass function (IMF) describes the mass distribution of stars at the time of their formation and is of fundamental importance for many areas of astrophysics. The IMF is reasonably well constrained in the disk of the Milky Way but we have very little direct information on the form of the IMF in other galaxies and at earlier cosmic epochs. Here we report observations of the Na?(I) doublet and the Wing-Ford molecular FeH band in the spectra of elliptical galaxies. These lines are strong in stars with masses less than 0.3M(⊙) (where M(⊙) is the mass of the Sun) and are weak or absent in all other types of stars. We unambiguously detect both signatures, consistent with previous studies that were based on data of lower signal-to-noise ratio. The direct detection of the light of low-mass stars implies that they are very abundant in elliptical galaxies, making up over 80% of the total number of stars and contributing more than 60% of the total stellar mass. We infer that the IMF in massive star-forming galaxies in the early Universe produced many more low-mass stars than the IMF in the Milky Way disk, and was probably slightly steeper than the Salpeter form in the mass range 0.1M(⊙) to 1M(⊙).  相似文献   

8.
Heavens A  Panter B  Jimenez R  Dunlop J 《Nature》2004,428(6983):625-627
The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how galactic structures form and evolve. Observations of young stars in distant galaxies at different times in the past have indicated that the stellar birthrate peaked some eight billion years ago before declining by a factor of around ten to its present value. Here we report an analysis of the 'fossil record' of the current stellar populations of 96,545 nearby galaxies, from which we obtained a complete star-formation history. Our results broadly support those derived from high-redshift galaxies. We find, however, that the peak of star formation was more recent--around five billion years ago. We also show that the bigger the stellar mass of the galaxy, the earlier the stars were formed, which indicates that high- and low-mass galaxies have very different histories.  相似文献   

9.
Models of the chemical evolution of the Milky Way suggest that the observed abundances of elements heavier than helium ('metals') require a continuous infall of gas with metallicity (metal abundance) about 0.1 times the solar value. An infall rate integrated over the entire disk of the Milky Way of approximately 1 solar mass per year can solve the 'G-dwarf problem'--the observational fact that the metallicities of most long-lived stars near the Sun lie in a relatively narrow range. This infall dilutes the enrichment arising from the production of heavy elements in stars, and thereby prevents the metallicity of the interstellar medium from increasing steadily with time. However, in other spiral galaxies, the low-metallicity gas needed to provide this infall has been observed only in associated dwarf galaxies and in the extreme outer disk of the Milky Way. In the distant Universe, low-metallicity hydrogen clouds (known as 'damped Ly alpha absorbers') are sometimes seen near galaxies. Here we report a metallicity of 0.09 times solar for a massive cloud that is falling into the disk of the Milky Way. The mass flow associated with this cloud represents an infall per unit area of about the theoretically expected rate, and approximately 0.1-0.2 times the amount required for the whole Galaxy.  相似文献   

10.
通过对团星系和场星系的聚度参数、特征恒星形成率、星系中包含的恒星质量、金属丰度等物理参量的比较,研究了处在不同引力环境中星系的恒星形成性质.研究表明,聚度高的星系主要居于星系团中,大部分低质量星系是场星系,星系的特征恒星形成率与恒星质量和金属丰度之间存在着显著的相关.另外,团星系和场星系在红移小于0.1的范围内仍表现出了明显的宇宙学演化效应.  相似文献   

11.
Alves JF  Lada CJ  Lada EA 《Nature》2001,409(6817):159-161
Stars and planets form within dark molecular clouds, but little is understood about the internal structure of these clouds, and consequently about the initial conditions that give rise to star and planet formation. The clouds are primarily composed of molecular hydrogen, which is virtually inaccessible to direct observation. But the clouds also contain dust, which is well mixed with the gas and which has well understood effects on the transmission of light. Here we use sensitive near-infrared measurements of the light from background stars as it is absorbed and scattered by trace amounts of dust to probe the internal structure of the dark cloud Barnard 68 with unprecedented detail. We find the cloud's density structure to be very well described by the equations for a pressure-confined, self-gravitating isothermal sphere that is critically stable according to the Bonnor-Ebert criteria. As a result we can precisely specify the physical conditions inside a dark cloud on the verge of collapse to form a star.  相似文献   

12.
Pflamm-Altenburg J  Kroupa P 《Nature》2008,455(7213):641-643
The rate of star formation in a galaxy is often determined by the observation of emission in the Halpha line, which is related to the presence of short-lived massive stars. Disk galaxies show a strong cut-off in Halpha radiation at a certain galactocentric distance, which has led to the conclusion that star formation is suppressed in the outer regions of disk galaxies. This is seemingly in contradiction to recent observations in the ultraviolet which imply that disk galaxies have star formation beyond the Halpha cut-off, and that the star-formation-rate surface density is linearly related to the underlying gas surface density, which is a shallower relationship than that derived from Halpha luminosities. In a galaxy-wide formulation, the clustered nature of star formation has recently led to the insight that the total galactic Halpha luminosity is nonlinearly related to the galaxy-wide star formation rate. Here we show that a local formulation of the concept of clustered star formation naturally leads to a steeper radial decrease in the Halpha surface luminosity than in the star-formation-rate surface density, in quantitative agreement with the observations, and that the observed Halpha cut-off arises naturally.  相似文献   

13.
为了研究引力不稳定性在巨分子云形成中的作用,通过计算机模拟技术建立了星系中分子云的较差自转模型.在演化中除了分子云之间的碰撞外,模型还考虑了分子云在恒星盘的背景引力场中所受的引力和分子云之间的相互自引力.其中分别考虑分子云之间的短程力(随机碰撞模型)和长程力(引力不稳定性模型).通过对计算机模拟的结果进行详细的分析和讨论,得到了以下结果:对于较差自转模型,引力不稳定性在巨分子云的聚合形成中起了关键的积极作用,它能够加速和加大分子云的成团.  相似文献   

14.
RR Lyrae pulsating stars have been extensively used as tracers of old stellar populations for the purpose of determining the ages of galaxies, and as tools to measure distances to nearby galaxies. There was accordingly considerable interest when the RR Lyrae star OGLE-BLG-RRLYR-02792 (referred to here as RRLYR-02792) was found to be a member of an eclipsing binary system, because the mass of the pulsator (hitherto constrained only by models) could be unambiguously determined. Here we report that RRLYR-02792 has a mass of 0.26 solar masses M[symbol see text] and therefore cannot be a classical RR Lyrae star. Using models, we find that its properties are best explained by the evolution of a close binary system that started with M[symbol see text] and 0.8M[symbol see text]stars orbiting each other with an initial period of 2.9 days. Mass exchange over 5.4 billion years produced the observed system, which is now in a very short-lived phase where the physical properties of the pulsator happen to place it in the same instability strip of the Hertzsprung-Russell diagram as that occupied by RR Lyrae stars. We estimate that only 0.2 per cent of RR Lyrae stars may be contaminated by systems similar to this one, which implies that distances measured with RR Lyrae stars should not be significantly affected by these binary interlopers.  相似文献   

15.
The most massive galaxies in the present-day Universe are found to lie in the centres of rich clusters. They have old, coeval stellar populations suggesting that the bulk of their stars must have formed at early epochs in spectacular starbursts, which should be luminous phenomena when observed at submillimetre wavelengths. The most popular model of galaxy formation predicts that these galaxies form in proto-clusters at high-density peaks in the early Universe. Such peaks are indicated by massive high-redshift radio galaxies. Here we report deep submillimetre mapping of seven high-redshift radio galaxies and their environments. These data confirm not only the presence of spatially extended regions of massive star-formation activity in the radio galaxies themselves, but also in companion objects previously undetected at any wavelength. The prevalence, orientation, and inferred masses of these submillimetre companion galaxies suggest that we are witnessing the synchronous formation of the most luminous elliptical galaxies found today at the centres of rich clusters of galaxies.  相似文献   

16.
利用星风吸积模型,计算了钡星的初始质量和AGB伴星的金属丰度对弱钡星和强钡星超丰因子的影响,计算了弱钡星和强钡星重元素(Y,Nd)丰度随轨道周期终值的变化,并和观测值作了比较.由此得出结论:强钡星和弱钡星的区别主要是金属丰度不同(即年代不同),而不是轨道距离;弱钡星和强钡星相比,属于较年轻、质量较大、金属丰度较丰富的星族;这就意味,s-元素的核合成在低金属丰度星族更有效产生.  相似文献   

17.
Little is known about the origins of globular clusters, which contain hundreds of thousands of stars in a volume only a few light years across. Radiation pressure and winds from luminous young stars should disperse the star-forming gas and disrupt the formation of the cluster. Globular clusters in our Galaxy cannot provide answers; they are billions of years old. Here we report the measurement of infrared hydrogen recombination lines from a young, forming super star cluster in the dwarf galaxy NGC5253. The lines arise in gas heated by a cluster of about one million stars, including 4,000-6,000 massive, hot 'O' stars. It is so young that it is still enshrouded in gas and dust, hidden from optical view. The gases within the cluster seem bound by gravity, which may explain why the windy and luminous O stars have not yet blown away those gases. Young clusters in 'starbursting' galaxies in the local and distant Universe may also be gravitationally confined and cloaked from view.  相似文献   

18.
Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies, with the remainder being less massive non-rotating objects. The line-of-sight-averaged velocity dispersions are typically five times higher than in today's disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos. These accreting flows, however, have not been observed, and cosmic accretion cannot power the observed level of turbulence. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.  相似文献   

19.
The formation of low-mass stars like our Sun can be explained by the gravitational collapse of a molecular cloud fragment into a protostellar core and the subsequent accretion of gas and dust from the surrounding interstellar medium. Theoretical considerations suggest that the radiation pressure from the protostar on the in-falling material may prevent the formation of stars above ten solar masses through this mechanism, although some calculations have claimed that stars up to 40 solar masses can in principle be formed via accretion through a disk. Given this uncertainty and the fact that most massive stars are born in dense clusters, it was suggested that high-mass stars are the result of the runaway merging of intermediate-mass stars. Here we report observations that clearly show a massive star being born from a large rotating accretion disk. The protostar has already assembled about 20 solar masses, and the accretion process is still going on. The gas reservoir of the circumstellar disk contains at least 100 solar masses of additional gas, providing sufficient fuel for substantial further growth of the forming star.  相似文献   

20.
To understand the evolution of galaxies, we need to know as accurately as possible how many galaxies were present in the Universe at different epochs. Galaxies in the young Universe have hitherto mainly been identified using their expected optical colours, but this leaves open the possibility that a significant population remains undetected because their colours are the result of a complex mix of stars, gas, dust or active galactic nuclei. Here we report the results of a flux-limited I-band survey of galaxies at look-back times of 9 to 12 billion years. We find 970 galaxies with spectroscopic redshifts between 1.4 and 5. This population is 1.6 to 6.2 times larger than previous estimates, with the difference increasing towards brighter magnitudes. Strong ultraviolet continua (in the rest frame of the galaxies) indicate vigorous star formation rates of more than 10-100 solar masses per year. As a consequence, the cosmic star formation rate representing the volume-averaged production of stars is higher than previously measured at redshifts of 3 to 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号