首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
采用里氏木霉为发酵菌种,通过液体深层发酵的方法,制备纤维素酶粗酶液,并用于酶促打浆.在温度30,℃、转速120,r/min条件下培养96,h,系统研究了氮源和碳源种类、碳源用量、麸皮用量、微量元素液和营养元素液加入量对纤维素酶各组分酶活的影响.结果表明,在以0.2%硫酸铵为氮源,1%思茅松漂白硫酸盐浆为碳源,微量元素液和营养元素液加入量分别为0.2%、8%,麸皮加入量为1%的条件下,能够获得较高的纤维素酶酶活.酶促打浆研究结果表明:当纤维素酶用量为7,U/g时,思茅松漂白硫酸盐浆的打浆度提高40%,且纸浆强度性能损失小.  相似文献   

2.
为了解决未漂硫酸盐针叶木浆一直存在的打浆困难、打浆能耗高等问题,本研究通过阿魏酸酯酶预处理提升未漂硫酸盐针叶木浆的打浆效果.结果表明,阿魏酸酯酶预处理使纸浆纤维表面出现孔洞且变得松弛,可以促进纤维吸水润胀并提高浆料打浆性能.在阿魏酸酯酶用量10 U/g、浆浓3%、pH=5、温度50℃的条件下预处理纸浆1 h,打浆能耗可降低40.7%,打浆效果显著提升.  相似文献   

3.
以PFI磨为打浆设备,优化烟梗酶促打浆酶预处理条件,分析酶处理对浆料不同筛分纤维特征的影响.结果表明,酶用量0.5%、pH7、50℃处理4 h对打浆最有利.相同打浆度下,酶处理组磨浆能耗降低了37.21%.酶处理后浆料纤维主要分布在R30~R100内,其中R50、R100、R200纤维平均长度较对照分别增加了14.06%、15.69%和4.42%,纤维宽度也有所增加.酶处理组R50组分含量不变,但R100和R200组分减少了46.15%和18.24%,R350组分有所增加,经酶处理的R50纤维扭结指数减小,R100、R200、R350纤维扭结指数增加.生物酶处理烟梗可以改善烟梗浆性能.  相似文献   

4.
对纤维分离点处的麦草碱—乙醇浆,麦草苛性钠浆的打浆性能和纸页物理性能的比较发现:麦草碱—乙醇浆得率高12%(绝对值)左右,浆料易打浆,但相同打浆度下,纸页抗撕裂性能较差、脆裂度较大。脱除其部分残余木素后纸页性能得到改善。不论何种浆,打浆过程中纤维形态结构以及纤维的超分子结构的变化都较大地影响纸页的脆性。  相似文献   

5.
采用漆酶处理国产旧瓦楞纸箱(LOCC)原料增加纸浆强度,对漆酶处理国产OCC纸浆最佳工艺条件进行优化.在最优条件下,采用扫描电镜(SEM)分析了漆酶处理前后成纸纤维表面的形态差异,并利用纤维形态分析仪(Fiber-Tester)分析了漆酶处理前后浆料中纤维形态学参数的变化.研究结果表明漆酶处理国产OCC纸浆最佳工艺条件为:酶用量24 U/g(相对于绝干浆),pH 6.0,温度45,℃,浆浓3%,通空气条件下反应2,h.漆酶在最优条件下处理国产OCC纸浆时,干抗张指数提高11.5%,湿抗张指数提高12.2%,干环压指数提高7.5%,湿环压指数提高幅度最大为20.6%;漆酶/白水体系在最优条件下处理国产OCC纸浆时,干抗张指数提高10.0%,湿抗张指数提高27.0%,干环压指数提高10.5%,湿环压指数提高幅度最大为24.9%.经过漆酶处理后的纤维表面呈现凹凸不平的现象,纤维形态学参数无明显变化;而经过漆酶/白水体系处理后的纤维间产生更多的连接膜,纤维的粗度由空白试样的136.7 mg/m提高至140.6 mg/m.  相似文献   

6.
由沟槽纤维织制的织物由于纤维表面的微细沟槽和特殊截面而具有良好的吸湿快干性,但是其纤维表面的沟槽在强碱或高温条件下很容易被破坏,所以要求退浆工艺条件比较温和.论文中分析了生物酶对沟槽纤维织物退浆的特有优势及影响酶活力的因素,并且用生物酶对吸湿快干牛仔织物进行了L9(34)正交退浆试验,得出了优化的工艺参数.  相似文献   

7.
采用正交试验筛选雪莲果打浆护色的工艺条件。结果表明,雪莲果打浆最佳护色混合液配方为0.04%HA(耐晒通用型护色剂)、0.06%植酸钠和0.15%柠檬酸。  相似文献   

8.
针对粮食包装袋的特殊要求,研究了思茅松硫酸盐浆抄造粮食包装袋纸的打浆工艺.实验结果表明,打浆时间和打浆浓度对纸张的抗张强度、抗张能量吸收、伸长率、耐破度等都有一定程度的影响;思茅松硫酸盐浆在打浆浓度为16%时利用PFI磨打浆5,min时所抄纸页可以满足粮食包装袋纸的性能要求.以20%与5%的浓度组合进行组合打浆,更可取得较好的纸张韧性发展,同时获得良好的纸张撕裂强度和透气度性能,所制粮食包装袋纸具有较好的使用性能.  相似文献   

9.
漆酶/介体系统对马尾松TMP打浆性能及纤维形态的影响   总被引:2,自引:0,他引:2  
研究了漆酶处理对未漂马尾松热磨机械浆打浆性能及纤维形态的影响,发现:漆酶处理能够使未漂马尾松热磨机械浆纤维的胞间层甚至初生壁产生剥蚀,纤维表面木素减少,暴露出更多富含碳水化合物的层结构,纤维更容易吸水润胀,结构更加疏松,更容易分丝帚化,同时在打浆过程中纤维的切断现象也减少;漆酶处理能较大幅度提高浆料的成纸强度,其裂断长、撕裂指数分别提高37.30%和47.33%,松厚度下降20.33%,并使动态接触角下降.结果表明,马尾松热磨机械浆纤维的漆酶改性是一种有效的改性方式,能够降低打浆能耗,改善打浆效果,提高纸页的结合强度.  相似文献   

10.
利用NS51003漆酶对美国旧瓦愣纸箱(AOCC)浆进行生物酶改性,研究了漆酶用量对AOCC浆强度性能的影响。研究结果表明,在最佳酶促反应条件下,即:浆料浓度5%;pH7;反应温度室温;反应时间1h;通空气时,漆酶最佳用量为16U/g。同时还发现,漆酶处理过程中加入介体(丁香酸甲酯MS)后,与单独用漆酶处理相比,AOCC浆的湿抗张强度和湿环压强度均得到进一步的明显提高,这说明介体MS对促进漆酶处理AOCC浆有显著的效果。对漆酶处理和空白的浆样与手抄片进行扫描电镜分析的结果表明,经过漆酶处理后,纤维表面状况发生了明显的变化。  相似文献   

11.
对亚麻纤维进行打浆、抄片,检测物理指标,根据抄片指标,制定出适合生产全亚麻卷烟纸的打浆工艺,根据生产车间工艺设备配置,对盘磨磨齿进行选择、对打浆功率进行调整,对打浆浓度、打浆度、湿质量进行控制,成功开发出预期目标的全亚麻卷烟纸.  相似文献   

12.
采用分子改良后的木聚糖酶对芦苇浆进行生物预处理,考察了改良木聚糖酶辅助漂白的效果。结果表明,酶预处理可以降低CEH三段漂白中氯化C段的氯气用量60%。改良木聚糖酶预处理辅助漂白芦苇纸浆最佳条件为:pH为7.0,温度60℃,浆浓(质量分数)5%,酶用量12μmol/(min.g),预处理时间60 min。在此条件下C段氯用量降至对照的40%时,酶处理漂后样品白度可达到84.0%(ISO),高出对照样的白度3.7%(ISO)。改良木聚糖酶预处理还能够改善纸浆漂后样的物理性能。  相似文献   

13.
We studied an enzymatic deinking process of non-impact printed paper which was carried out in batch equipment, similar to Valley beater. The equipment can provide suitable forces to cause toner separation from fiber rather than fiber damage. The factors that influenced the deinking efficiency included beating time, pressure between rotating bars and bottom bars, enzyme properties such as dosage,cellulase activity, temperature, pH, etc. Beating time and enzyme type and enzyme dosage was investigated in detail. The deinked pulp was brighter and cleaner. The drainage property also can be controlled by adjusting enzyme dosage and mechanical action strength. Combining enzyme with mechanical action provides the best deinking effects,not enzyme alone. In the meantime, mechanism of enzymatic deinking was discussed depending on the deinked pulp properties.  相似文献   

14.
The Calabrien pine (Pinus brutia) wood chips prior to kraft pulping were biologically pre-treated with selected white-rot fungi (Ceriporiopsis subvermispora), which was recorded to be preferentially attacking the lignin component of the wood. The effects of this treatment on beating performance and physical strength of resultant papers were studied in detail. Bio-treated samples showed comparable and, in most cases, higher physico-mechanical properties than those obtained from untreated controls. Under the same beating conditions the bio-treated kraft pulp was noted to have the lower SR' indicating a lower degree of external fibrillation. The paper made from bio-treated kraft pulp has a higher density, tensile property, air permeability and swellability. Furthermore, remarkable energy savings up to 33 % were observed when beating bio-treated kraft pulp. This study contributes to a better understanding of the mechanisms taking place during bio-treatment and the modification processes of cell wall components.  相似文献   

15.
The Calabrien pine (Pinus brutia) wood chips prior to kraft pulping were biologically pre-treated with selected white-rot fungi (Ceriporiopsis subvermispora), which was recorded to be preferentially attacking the lignin component of the wood. The effects of this treatment on beating performance and physical strength of resultant papers were studied in detail. Bio-treated samples showed comparable and, in most cases, higher physico-mechanical properties than those obtained from untreated controls. Under the same beating conditions the bio-treated kraft pulp was noted to have the lower SR° indicating a lower degree of external fibrillation. The paper made from bio-treated kraft pulp has a higher density, tensile property, air permeability and swellability. Furthermore, remarkable energy savings up to 33 % were observed when beating bio-treated kraft pulp. This study contributes to a better understanding of the mechanisms taking place during bio-treatment and the modification processes of cell wall components.  相似文献   

16.
通过考察超声预处理的超声功率、 温度和时间, 以及水活度和pH值等反应条件对酶促拆分布洛芬反应的影响, 筛选得到超声预处理对酶促拆分布洛芬的最适反应条件. 实验结果表明, 超声预处理作用可大幅度提高酶的催化性能.  相似文献   

17.
低龄厚荚相思木的制浆造纸性能   总被引:1,自引:0,他引:1  
对3年和6年生厚英相思,在各自的最佳硫酸盐法蒸煮工艺条件下,制取相近硬度的浆料,比较蒸煮、打浆、强度及漂白性能,进而对其制浆性能进行综合评价。  相似文献   

18.
Hydrogen peroxide bleaching has been extensively used in high-yield pulp bleaching. Unfortunately,hydrogen peroxide can be decomposed under alkaline condition, especially when transition metal ions exit. Experiments show that the valence of transition metal ion is also responsible for the decomposition of hydrogen peroxide.Iron ions are present in two oxidation states, Fe2+ and Fe3+. They are both catalytically active to hydrogen peroxide decomposition. Because Fe3+ is brown, it can affect the brightness of pulp directly, it can also combine with phenol, forming complexes which not only are stable structures and are difficult to be removed from pulp, but also significantly affect the brightness of pulp because of their color.Sodium silicate and magnesium sulfate, when used together, can greatly decrease hydrogen peroxide decomposition. The optimum dosage of sodium silicate is about 0.1% (on solution) for Fe2+ and 0.25% (on solution) for Fe3+. Adding chelants such as DTPA or EDTA with stabilizers simultaneously can obviously improve pulp brightness. For iron ions, the chelate effect of DTPA is better than that of EDTA.Under acidic conditions, sodium hyposulfite and cellulose can reduce Fe3+ to Fe2+ effectively, and pulp brightness is improved greatly. Adding sodium thiosulfate simultaneously with magnesium sulfate,sodium silicate, and DTPA to alkaline peroxide solution can result in higher brightness of pulp.pH is a key parameter during hydrogen peroxide bleaching, the optimum pH value should be 10.5-12.  相似文献   

19.
INTRODUCTIONHydrogen peroxide bleaching has been extensively used in high-yield pulp bleaching. IT is well known that hydrogen peroxide can be easily decomposed under alkaline conditions, especially in the presence of transition metal ions due to their catalyzing effect on the decomposition of hydrogen peroxide. Some recent reports show that the valence of transition metal ion can have a drastic effect on the decomposition of hydrogen peroxide.Generally, iron can exist in Fe2+ and Fe3+…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号