共查询到17条相似文献,搜索用时 78 毫秒
1.
研究了亚纯函数及其导数分担函数的增长级问题,结合迭代级和正规族的理论,改进了现有的结果. 相似文献
2.
戚建明 《五邑大学学报(自然科学版)》2011,25(1):6-9
设F为单位圆盘△上的一族全纯函数,a和b为2个有限的复数且有b≠a,如果对任意的z∈△且对每个f∈F,若f=α→f′=α,且f=b≥→f′=b,则存在一正整数M且对任意的f∈F,有(1-|z|^2)f^#(z)=(1-|z|^2)|f′(z)|/1+|f(z)|^2≤M. 相似文献
3.
利用亚纯函数值分布理论与正规理论的一些基本概念、研究方法以及研究成果,并以顾永兴的定理为基础,讨论函数族中任意函数的高阶零点不取固定函数的这类亚纯函数的正规问题,最后得到如下正规定则:设F是单位圆盘内的一族亚纯函数,k为一个正整数,且k≥2,A为一有穷正数,h(z)是全纯函数,其中h(z)≠0,如果对任意的f∈F,f的零点重级至少为k,且f的极点重级至少为3;并且满足当f(z)=0时,必有f(k)(z)≤A;f的k阶导数不取固定函数h(z),即f(k)(z)≠h(z),则F在区域内是正规的. 相似文献
4.
5.
设F是域D内的亚纯函数族,k,n(n≥k+2)是正整数.设a≠0是有限复数.如果对任意f∈F,f的零点重级至少为n,且对F中的任何函数对f与g满足G(f)与G(g)在D内分担b,其中G(f)=P(f(k))+H(f)是f的微分多项式,那么F在D内正规. 相似文献
6.
20多年前,L.Zalcman证明了一个刻化平面域上全纯与亚纯函数族正规性的引理。多年来,许多作者改进了这个引理,并用这类引理在函数论及相关领域中证明了许多重要的结果。本文综述这类引理在近几年的发展和它们的惊人应用。 相似文献
7.
《四川理工学院学报(自然科学版)》2017,(5):79-82
<正>规族理论的发展经历了利用Nevanlinna值分布理论和L.Zalcman引理简化许多通过大量消去原始值而得到正规定则证明的过程,同时也建立了一系列新的正规定则。把亚纯函数正规族与分担值或分担集合结合起来考虑是亚纯函数正规族理论研究的一个重要课题。目前正规族的相关理论在复动力系统、复微分方程、模分布和整函数唯一性等方面都有着重要的应用。文章主要探讨了亚纯函数的值分布理论,利用L.Zalcman引理研究了一类涉及高阶导数分担值的亚纯函数族的正规性问题,推广并改进了已有的结果。主要结果为:设F是区域D上的一亚纯函数族,k为正整数,a为非零有穷复数,若对任意的f(z)∈F,有f(z)-a的零点重级至少为k+1,且f(z),f~(k)(z)与f~(k+1)(z)IM分担a,则F在D上正规。 相似文献
8.
设F是区域D上的一族亚纯函数,a(z)在区域D上解析且a(z)≠0(z∈D),k是一个不小于3的正整数,A,B是两个正实数,a0(z),a1(z),…,ak-1(z)在区域上D解析.如果(A)f∈F,f的零点重数至少为k,且对z∈D,满足(1°)当f(k)(z) ak-1(z)f(k-1)(z) …a1(z)f'(z) a0(z)f(z)=a(z)时,|f(z)|≥A;(2°)当f(z)=0时,0<|f(k)(z)|≤B,则F在D上正规. 相似文献
9.
研究了亚纯函数族的正规性,在改进顾永兴、杨乐、方明亮等人的相关结果的基础上获得了亚纯函数族的几个正规定则.在涉及例外函数a(z)其中a(z)≠0的条件下,主要证明了定理1和定理2. 相似文献
10.
从分担值的思想出发,利用Zaclman引理证明了一个正规定则,推广和改进了原有的结果。 相似文献
11.
12.
分担值与亚纯函数的正规性 总被引:1,自引:0,他引:1
张鹤琼 《西南师范大学学报(自然科学版)》2009,34(5)
把亚纯函数的分担值和推广了的球面导数相结合,得到了如下结果:设F是区域D内的亚纯函数族,若F中的任意函数,(∈F)的零点重数至少是k(k是正整数),f=0当且仅当f(k)=0,且当z∈E(1,f(k))时,存在正整数M(<1),使得|f(k)(z)|/1+|f(z)|k+1≤M 则F在D内正规. 相似文献
13.
杨拍 《重庆大学学报(自然科学版)》2006,29(6):84-86
设为F区域D上亚纯函数簇,k∈Z^+(k≥2),m∈Z^+,a≠0,b为两有穷复数,c(z)≠0为D上解析函数,Vf∈F,f(z)的零点之级≥m,并且f(z)在区域D上的极点总个数(计算重数)至多为m,f(z)=a→f'(z)=b,f(z)=0→0→f'(z)=c(z),f'(z)=c(z)→|f^(k)(z)|≤h,那么F在区域D内正规. 相似文献
14.
设F是区域D上的一族亚纯函数,ψ(■0)是区域D上的全纯函数,k为正整数,且对于任意的函数f∈F,都满足条件:f不取零,f(k)+∑k-1于等于(k+2)/k,且中括号内的微分多项式与ψ(z)无公共零点;其中ai(z)与bi(z)是区域D上全纯函数(i=0,1,…,k-1),则F在D内正规. 相似文献
15.
16.
设R为区域D上的一族亚纯函数,n,k(n≥k+1)均为正整数,b为一有限非零复数,a0(z),a1(z),……,ak-1(z)为D上的全纯函数,若对R中的任意函数f,f在D内的零点重数至少为n,f的极点重数至少为2,且L∽=b=〉f=b,其中L∽(z)=f^(k)(z)+k-1∑i=0ai(z)f^(i)(z),则R在D内正规. 相似文献
17.