首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 99 毫秒
1.
讨论了三次有理Bézier曲线与带一个形状参数的HC-Bézier曲线的光滑拼接问题,并给出了三次有理Bézier曲线与HC-Bézier曲线的G~0、G~1和G~2光滑拼接的几何条件.  相似文献   

2.
给出了一组含有参数λ的三次三角基函数,分析了此基函数的性质。基于该组基定义了带形状参数的三角曲线,该曲线不仅具有二次T-Bézier曲线的性质,而且具有形状可调性和更好的逼近性。参数λ有明确的几何意义。最后还讨论了两段曲线的G2拼接条件。  相似文献   

3.
拟三次Bézier曲线的形状调整   总被引:4,自引:0,他引:4  
对于Bézier曲线的形状调整问题,给出了一组含有2个参数的四次多项式基函数,它是三次Bernstein基函数的扩展.基于该组基函数定义的带形状参数的曲线,称为三次拟Bézier(三次Q-Bézier)曲线,其优点是在保持控制多边形不变的情况下,可以通过改变形状参数来调整曲线形状.研究基于几何约束的形状调整,通过改变形状参数来满足给定的约束条件,得到形状参数简洁的计算公式,具有明显的几何意义.计算实例表明,该方法是有效的,可以广泛地应用于计算机辅助设计中对曲线形状调整.  相似文献   

4.
文章对已有的含2个参数的单变量基函数,即αβ-B基进行了深入的研究,得出了基函数的显式表示,以及基函数与Bernstein基之间的关系,探讨了由之定义的曲线与Bézier曲线之间的关系,以及曲线的递推求值算法;定义了相应的四边域上的张量积曲面,给出了曲面与张量积Bézier曲面之间的关系;并将αβ-B基推广至三角域,定义了相应的双变量基函数,给出了该基函数的显式表示,以及与Bernstein多项式之间的关系;分析了该双变量基函数的性质,定义了相应的三角域曲面,讨论了该曲面与Bernstein-Bézier曲面之间的关系,以及曲面的递推求值算法。  相似文献   

5.
构造了带一个形状参数的五次三角多项式基函数,由此定义了带形状参数的五次三角Bézier曲线,它具有Bézier曲线的几何特性、端点性、对称性等.通过改变形状参数α的取值,可对曲线的形状进行调控.当形状参数α越大,曲线越逼近控制多边形.该曲线还可表示为椭圆弧、抛物线弧等,给出了2段曲线达到C1、C2连续的条件及其在曲线设计中的应用实例.  相似文献   

6.
定义了一类带形状参数的Bézier曲线,分析了参数对曲线形状的调节作用,给出了二次和三次曲线的形状修改算法,实例表明算法是有效的。  相似文献   

7.
利用一个对称的调配函数,结合NURBS曲线中权的思想,在曲线控制顶点处引进调配参数,将一类T-Bézier曲线进行扩展,得到的新曲线比原来的曲线有更强的描述能力,并且包含了原曲线形式.讨论了扩展曲线的基表示及曲线的性质,调配参数可以用来控制曲线的局部形状,特别适用于自由曲线曲面的设计,在CAD/CAM中具有很好的应用前景.  相似文献   

8.
二次Bézier曲线的扩展   总被引:5,自引:0,他引:5  
给出了三次带参数λi的多项式调配函数,它是二次B啨zier曲线基函数的扩展.基于给出的调配函数,建立了带形状参数的分段多项式曲线生成方法;研究了所生成曲线及其基函数的性质和连续条件.其基函数具有权性,在参数λi取值于[-2,1]区间时具有非负性;曲线的性质如端点性质、对称性、凸包性、几何不变性等与二次B啨zier曲线的性质类似.研究结果表明:通过改变形状参数λi的取值,可以调整第i段曲线接近某控制多边形的程度;所给曲线中的形状参数λi是局部的,便于进行曲线设计.  相似文献   

9.
提出由多项式基底和有理函数基底构造出混合Bézier函数类的思想,由此定义了混合Bézier类曲线.并研究了一种实用的三次混合Bézier类曲线,同时给出由三次混合Bézier类曲线表示圆弧的实例.与Bézier曲线和有理Bézier分别相比较,三次混合Bézier曲线可以表示圆弧且计算较为简单.  相似文献   

10.
文章构造了一组带有多个参数的四次多项式基函数,它是二次Bernstein基函数的扩展;分析了这组基的性质,基于这组基函数定义了带多个参数的多项式曲线;所定义的曲线不仅具有Bézier曲线的特性,而且在控制顶点不变的情况下,随着参数取值不同,可产生不同的逼近控制多边形的曲线;另外,经典的二次Bézier曲线和相关文献中的...  相似文献   

11.
根据有理Bézier曲线的性质,本文提出了一种能够用于同时磨光任意多边形的方法.利用这种方法,不仅可以调整磨光曲线对原始多边形的整体逼近程度,而且还可以对磨光曲线的形状进行局部地控制.  相似文献   

12.
文章给出了一组由3个含参数的4次多项式构成的基函数,在此基础上递推定义了由任意n+1(n≥3)个含参数的代数三角混合函数构成的函数组,称之为n阶λ-Bernstein基,它具有Bernstein基函数的非负性、规范性、对称性等性质。由之定义的λ-Bézier曲线除了具备Bézier曲线的基本性质以外,还具有2个突出的优点:其形状可以在不改变控制顶点的情况下自由调整;当相邻λ-Bézier曲线的控制顶点满足普通Bézier曲线的G1光滑拼接条件时,曲线在公共连接点处可达G2光滑拼接。运用张量积方法定义的λ-Bézier曲面同样具有很多良好的性质。  相似文献   

13.
对于Bézier曲线的形状调整问题,给出了一组含有2个参数的四次多项式基函数,它是三次Bernstein基函数的扩展.基于该组基函数定义的带形状参数的曲线,称为三次拟Bézier(三次Q-Bézier)曲线,其优点是在保持控制多边形不变的情况下,可以通过改变形状参数来调整曲线形状.研究基于几何约束的形状调整,通过改变形状参数来满足给定的约束条件,得到形状参数简洁的计算公式,具有明显的几何意义.计算实例表明,该方法是有效的,可以广泛地应用于计算机辅助设计中对曲线形状调整.  相似文献   

14.
Based on the study of some intrinsic properties of the weights of rational Bézier curve, it has been found that the shape of a curve can be changed by adjusting the weights without moving its control points. An approach for improving the geometric continuity order between two adjacent curves by modifying the weights is presented. The G3 continuity conditions for two adjacent curves are first derived, which reveals that the geometric meaning of G3 continuity is torsion continuity. A constructive method is then presented to blend two rational Bézier curves with G3 continuity. Finally, the proposed method is used to construct closed G2 curves, or G3 curves by changing or inserting one control point.  相似文献   

15.
该文从上构造一组初始基,该基具有类似Bézier基的端点性和插值性,在此基础上定义空间上的H—Bézier基函数并给出了的递推公式,讨论了该基所具有的性质.同时定义了H—Bézier曲线和H—Bézier曲面,讨论了该曲线的性质的同时证明有许多实际应用价值的曲线(如代数曲线和超越趋向)可以用H—Bézier曲线的形式精确表示.  相似文献   

16.
给出了带2个形状参数α,γ五次多项式基函数和带3个形状参数α,β,γ的六次多项式基函数,都是五次Bernstein基函数的扩展。依据这两组基函数,并分别定义了两种带形状参数的多项式曲线。所得到的曲线具有五次Bezier曲线类似的几何性质,并且灵活性比较强。  相似文献   

17.
针对工程中复杂可展曲面难以用单一可展曲面来表示的问题,提出了一种带多形状参数的CE-Bézier可展曲面的光滑拼接技术.在对CE-Bézier可展曲面性质分析的基础上,将3D欧几里德空间中的CE-Bézier可展曲面解释为4D齐次空间中的CE-Bézier参数曲线,并利用参数曲线的连续性推导了CE-Bézier可展曲面间G1光滑拼接、Farin-BehmG2连续拼接以及G2Beta约束拼接的充要条件.最后给出了CE-Bézier可展曲面间光滑拼接的基本步骤和几何造型实例.研究结果表明:所提方法简单、直观、易实现,有效地增强了CE-Bézier可展曲面表达复杂可展曲面的能力.  相似文献   

18.
带形状参数λ的三次Bézier曲线是Bézier曲线的一种扩展形式,对其进行G1光顺延拓,分别利用近似曲线弧长、能量表达式作目标函数,通过极小化目标函数的方式来确定参数,达到更为光顺的效果。  相似文献   

19.
为了扩大自由型曲面的选择范围,本文引入一个形状参数,给出了三角域上Wang-Ball曲面的扩展。通过改变形状参数的值,可以调控曲面的形状。形状参数几何意义是明确的,随着参数的增大,曲面向控制网格靠近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号