首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direction of in vivo degradation of a messenger RNA   总被引:2,自引:0,他引:2  
R F Baker  C Yanofsky 《Nature》1968,219(5149):26-29
  相似文献   

2.
ZH Chen  P Schaap 《Nature》2012,488(7413):680-683
Cyclic di-(3′:5′)-guanosine monophosphate (c-di-GMP) is a major prokaryote signalling intermediate that is synthesized by diguanylate cyclases and triggers sessility and biofilm formation. We detected the first eukaryote diguanylate cyclases in all major groups of Dictyostelia. On food depletion, Dictyostelium discoideum amoebas collect into aggregates, which first transform into migrating slugs and then into sessile fruiting structures. These structures consist of a spherical spore mass that is supported by a column of stalk cells and a basal disk. A polyketide, DIF-1, which induces stalk-like cells in vitro, was isolated earlier. However, its role in vivo proved recently to be restricted to basal disk formation. Here we show that the Dictyostelium diguanylate cyclase, DgcA, produces c-di-GMP as the morphogen responsible for stalk cell differentiation. Dictyostelium discoideum DgcA synthesized c-di-GMP in a GTP-dependent manner and was expressed at the slug tip, which is the site of stalk cell differentiation. Disruption of the DgcA gene blocked the transition from slug migration to fructification and the expression of stalk genes. Fructification and stalk formation were restored by exposing DgcA-null slugs to wild-type secretion products or to c-di-GMP. Moreover, c-di-GMP, but not cyclic di-(3′:5′)-adenosine monophosphate, induced stalk gene expression in dilute cell monolayers. Apart from identifying the long-elusive stalk-inducing morphogen, our work also identifies a role for c-di-GMP in eukaryotes.  相似文献   

3.
4.
5.
The maternal messenger RNA An3 was originally identified localized to the animal hemisphere of Xenopus laevis oocytes, eggs and early embryos. Xenopus embryos depend on mRNA and protein present in the egg before fertilization (maternal molecules) to provide the information needed for early development. Localization of maternal mRNA gives cells derived from different regions of the egg distinctive capacities for protein synthesis. We show here that An3 mRNA encodes a protein with 74% identity to a protein encoded by the testes-specific mRNA PL10 found in mouse, which is proposed to have RNA helicase activity. Because the gene encoding An3 mRNA is reactivated after gastrulation and remains active throughout embryogenesis, we have examined its distribution in embryonic and adult tissues. Unlike PL10 mRNA, which is primarily restricted to the testes, An3 mRNA is broadly distributed in later development.  相似文献   

6.
7.
W S Dynan  R Tjian 《Nature》1985,316(6031):774-778
  相似文献   

8.
Nilsen TW 《Nature》2000,408(6814):782-783
  相似文献   

9.
Processing of the 3' end of sea urchin H3 histone pre-mRNA requires conserved sequence elements and the presence of U7 snRNA. A mutation in the conserved CAAGAAGA sequence of the H3 pre-mRNA that renders 3' processing of this precursor defective is shown to be suppressed by a compensatory change in the U7 snRNA, restoring the base-pairing potential of the two RNAs. RNA-RNA contacts between these two molecules appear to be an essential feature of the 3' processing reaction.  相似文献   

10.
11.
P Bouvet  J G Belasco 《Nature》1992,360(6403):488-491
Despite the variety of messenger RNA half-lives in bacteria (0.5-30 min in Escherichia coli) and their importance in controlling gene expression, their molecular basis remains obscure. The lifetime of an entire mRNA molecule can be determined by features near its 5' end, but no 5' exoribonuclease has been identified in any prokaryotic organism. A mutation that inactivates E. coli RNase E also increases the average lifetime of bulk E. coli mRNA and of many individual messages, suggesting that cleavage by this endonuclease may be the rate-determining step in the degradation of most mRNAs in E. coli. We have investigated the substrate preference of RNase E in E. coli by using variants of RNA I, a small untranslated RNA whose swift degradation in vivo is initiated by RNase E cleavage at an internal site. We report here that RNase E has an unprecedented substrate specificity for an endoribonuclease, as it preferentially cleaves RNAs that have several unpaired nucleotides at the 5' end. The sensitivity of RNase E to 5'-terminal base pairing may explain how determinants near the 5' end can control rates of mRNA decay in bacteria.  相似文献   

12.
Park JE  Heo I  Tian Y  Simanshu DK  Chang H  Jee D  Patel DJ  Kim VN 《Nature》2011,475(7355):201-205
A hallmark of RNA silencing is a class of approximately 22-nucleotide RNAs that are processed from double-stranded RNA precursors by Dicer. Accurate processing by Dicer is crucial for the functionality of microRNAs (miRNAs). The current model posits that Dicer selects cleavage sites by measuring a set distance from the 3' overhang of the double-stranded RNA terminus. Here we report that human Dicer anchors not only the 3' end but also the 5' end, with the cleavage site determined mainly by the distance (~22 nucleotides) from the 5' end (5' counting rule). This cleavage requires a 5'-terminal phosphate group. Further, we identify a novel basic motif (5' pocket) in human Dicer that recognizes the 5'-phosphorylated end. The 5' counting rule and the 5' anchoring residues are conserved in Drosophila Dicer-1, but not in Giardia Dicer. Mutations in the 5' pocket reduce processing efficiency and alter cleavage sites in vitro. Consistently, miRNA biogenesis is perturbed in vivo when Dicer-null embryonic stem cells are replenished with the 5'-pocket mutant. Thus, 5'-end recognition by Dicer is important for precise and effective biogenesis of miRNAs. Insights from this study should also afford practical benefits to the design of small hairpin RNAs.  相似文献   

13.
14.
微生物异化还原及其对硝基苯的耦合降解   总被引:1,自引:0,他引:1  
通过静态实验对地下环境中微生物异化还原降解硝基苯作用及其影响因素进行了研究。结果表明,铁还原微生物能以简单有机物为碳源生长并还原针铁矿,硝基苯可以作为唯一碳源被铁还原微生物利用,随着硝基苯浓度的升高,铁还原微生物的生长逐渐受到抑制,硝基苯浓度为600mg/L时,铁还原微生物的生长停滞。针铁矿浓度0.3mg/L、铁还原微生物浓度2?08cells/mL时耦合体系对硝基苯降解效果最好,硝基苯降解率达78.5%以上。腐植酸能作为电子穿梭体促进耦合体系中硝基苯的衰减,硝基苯降解率达88.8%以上,而维生素B2(VB2)抑制了硝基苯的降解。  相似文献   

15.
Qu X  Wen JD  Lancaster L  Noller HF  Bustamante C  Tinoco I 《Nature》2011,475(7354):118-121
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.  相似文献   

16.
17.
18.
The RNA polymerase elongation complex (EC) is both highly stable and processive, rapidly extending RNA chains for thousands of nucleotides. Understanding the mechanisms of elongation and its regulation requires detailed information about the structural organization of the EC. Here we report the 2.5-A resolution structure of the Thermus thermophilus EC; the structure reveals the post-translocated intermediate with the DNA template in the active site available for pairing with the substrate. DNA strand separation occurs one position downstream of the active site, implying that only one substrate at a time can specifically bind to the EC. The upstream edge of the RNA/DNA hybrid stacks on the beta'-subunit 'lid' loop, whereas the first displaced RNA base is trapped within a protein pocket, suggesting a mechanism for RNA displacement. The RNA is threaded through the RNA exit channel, where it adopts a conformation mimicking that of a single strand within a double helix, providing insight into a mechanism for hairpin-dependent pausing and termination.  相似文献   

19.
One of the biochemical results of ethanol exposure is a change in the amount of the intracellular second messenger cyclic AMP (cAMP) produced in response to receptor stimulation. In general, acute ethanol exposure increases the amount of cAMP produced on stimulation of receptors coupled to the enzyme adenylyl cyclase via the GTP-binding protein Gs, whereas chronic ethanol exposure has the opposite effect (results for receptors coupled via Gi have been more variable). We previously reported that adaptation to continuous ethanol exposure reduces receptor-stimulated cAMP production by 25-35% in a neuroblastoma cell line (NG108-15), and an even greater reduction of 75% was observed in lymphocytes taken from actively-drinking alcoholics. This reduction in receptor-stimulated cAMP levels was recently confirmed in platelets from alcoholics. None of these studies, however, determined whether more than one receptor coupled to adenylyl cyclase activity was affected in the same cell. Here we report that chronic ethanol exposure causes desensitization of heterologous receptors coupled to Gs as cAMP production mediated by prostaglandin E1 as well as by adenosine is reduced by approximately 30% in NG108-15 cells. We show that, after chronic ethanol exposure, the activity of the alpha subunit of Gs is decreased by 29%, the amount of alpha s protein is decreased by 38.5%, and alpha s messenger RNA is decreased by 30%. Thus, cellular adaptation to ethanol involves a reduction in alpha s mRNA and, as a consequence, reduced cAMP production by heterologous receptors coupled to Gs. Such changes in cAMP production may account for the tolerance and physical dependence on ethanol in alcoholism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号