首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超导材料的种类非常广泛,有单质金属、合金材料、有机化合物、非金属单质、金属与非金属掺杂材料、金属氧化物等.从超导电性特征又分为非常规超导材料和常规超导材料.因此从超导电性的起源研究超导电性理论的特征具有重要的意义,既是重要的理论研究,又对合成、制备各种新型超导材料具有指导意义.分析研究了超导电性的本征特点,分别从超导的基本物理图像、同位素效应、超导转变温度计算公式表示等方面给出了常规超导体和非常规超导体的全面描述.同时理论上计算了一种有机复合超导材料.  相似文献   

2.
3.
超导体化学     
自发现汞的超导性以来,到现在已发现了一千多种超导材料。但是具有实用价值的只是那些临界值较高的超导材料。按其组成和结构可分类为:元素超导体、合金超导材料,化合物超导材料,非晶质超导材料及有机超导材料。本文重点讨论这些材料的开发状况及其合成方法。  相似文献   

4.
从结构化学角度出发,运用晶型键型过渡方法,对新型氧化物超导体的键型进行了归属。结果表明,高温超导材料属于具有部分离子性和部分共价性的晶体。同时还提出三条经验规律,为探索新体系超导体提供一定的指导作用。  相似文献   

5.
From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil-water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex topologies.  相似文献   

6.
以硫脲及其衍生物为配体的配合物的研究是非线性光学晶体材料研究的一个热点。这类配合大都以ⅡB族金属为中心离子,根据配体不同可分为硫脲类、烯丙基硫脲类及缩胺基硫脲类3种类型。这些配合物分子具有相似的四面体结构,晶体生长采用溶液降温或蒸发法,性质表征主要侧重于粉末倍频效应、光谱特性和热分析。未来研究重点在于此类材料的分子设计和晶体工程,采用理论与实验相结合的方法探索具有较强非线性光学效应的新材料。  相似文献   

7.
简要介绍了有机电致发光器件的过去、现在和未来.在激子利用机制上,有机电致发光材料经历了3代更迭,最近人们又提出了几种新的方法来提高激子利用率.与此同时,结合机器学习和人工智能等新型数据驱动技术也成为目前探索新颖高效有机电致发光材料的趋势.有机电致发光器件在经历了60多年的发展后,已经成功地从实验室走进千家万户,正慢慢地改善着人们的生活.   相似文献   

8.
粉末活性炭(PAC)处理工艺可快速高效地吸附去除水体中各类天然或合成的有机物、芳香族化合物、微污染物质、卤代烃以及铁、锰、重金属离子等有害物质,在净水领域具有广泛的应用意义.探讨了PAC的实际应用及联用其他技术所取得的成果,并基于其对有机物诸如农药、化工原料、气味性化合物、蓝藻毒素、总有机碳等有害物质的有效处理从而改善出水水质,提高出水生物稳定性,着重综述了PAC在净水处理中的研究进展及应用前景.  相似文献   

9.
Crystal engineering--the planning and construction of crystalline supramolecular architectures from modular building blocks--permits the rational design of functional molecular materials that exhibit technologically useful behaviour such as conductivity and superconductivity, ferromagnetism and nonlinear optical properties. Because the presence of two cooperative properties in the same crystal lattice might result in new physical phenomena and novel applications, a particularly attractive goal is the design of molecular materials with two properties that are difficult or impossible to combine in a conventional inorganic solid with a continuous lattice. A promising strategy for creating this type of 'bi-functionality' targets hybrid organic/inorganic crystals comprising two functional sub-lattices exhibiting distinct properties. In this way, the organic pi-electron donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and its derivatives, which form the basis of most known molecular conductors and superconductors, have been combined with molecular magnetic anions, yielding predominantly materials with conventional semiconducting or conducting properties, but also systems that are both superconducting and paramagnetic. But interesting bulk magnetic properties fail to develop, owing to the discrete nature of the inorganic anions. Another strategy for achieving cooperative magnetism involves insertion of functional bulky cations into a polymeric magnetic anion, such as the bimetallic oxalato complex [MnIICrIII(C2O4)3]-, but only insoluble powders have been obtained in most cases. Here we report the synthesis of single crystals formed by infinite sheets of this magnetic coordination polymer interleaved with layers of conducting BEDT-TTF cations, and show that this molecule-based compound displays ferromagnetism and metallic conductivity.  相似文献   

10.
Superconductivity in single crystals of the fullerene C70.   总被引:2,自引:0,他引:2  
The observation of superconductivity in doped C60 has attracted much attention, as these materials represent an entirely new class of superconductors. A maximum transition temperature (Tc) of 40 K has been reported for electron-doped C60 crystals, while a Tc of 52 K has been seen in hole-doped crystals; only the copper oxide superconductors have higher transition temperatures. The results for C60 raise the intriguing questions of whether conventional electron-phonon coupling alone can produce such high transition temperatures, and whether even higher transition temperatures might be observed in other fullerenes. There have, however, been no confirmed reports of superconductivity in other fullerenes, though it has recently been observed in carbon nanotubes. Here we report the observation of superconductivity in single crystals of electric-field-doped C70. The maximum transition temperature of about 7 K is achieved when the sample is doped to approximately four electrons per C70 molecule, which corresponds to a half-filled conduction band. We anticipate superconductivity in smaller fullerenes at temperatures even higher than in C60 if the right charge density can be induced.  相似文献   

11.
Patterning organic single-crystal transistor arrays   总被引:1,自引:0,他引:1  
Briseno AL  Mannsfeld SC  Ling MM  Liu S  Tseng RJ  Reese C  Roberts ME  Yang Y  Wudl F  Bao Z 《Nature》2006,444(7121):913-917
Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials. Their outstanding device performance, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals-a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source-drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO(2) surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm(2) V(-1) s(-1) and on/off ratios greater than 10(7), and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.  相似文献   

12.
The discovery of electrically conducting organic crystals and polymers has widened the range of potential optoelectronic materials, provided these exhibit sufficiently high charge carrier mobilities and are easy to make and process. Organic single crystals have high charge carrier mobilities but are usually impractical, whereas polymers have good processability but low mobilities. Liquid crystals exhibit mobilities approaching those of single crystals and are suitable for applications, but demanding fabrication and processing methods limit their use. Here we show that the self-assembly of fluorinated tapered dendrons can drive the formation of supramolecular liquid crystals with promising optoelectronic properties from a wide range of organic materials. We find that attaching conducting organic donor or acceptor groups to the apex of the dendrons leads to supramolecular nanometre-scale columns that contain in their cores pi-stacks of donors, acceptors or donor-acceptor complexes exhibiting high charge carrier mobilities. When we use functionalized dendrons and amorphous polymers carrying compatible side groups, these co-assemble so that the polymer is incorporated in the centre of the columns through donor-acceptor interactions and exhibits enhanced charge carrier mobilities. We anticipate that this simple and versatile strategy for producing conductive pi-stacks of aromatic groups, surrounded by helical dendrons, will lead to a new class of supramolecular materials suitable for electronic and optoelectronic applications.  相似文献   

13.
Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules.  相似文献   

14.
The application of a sufficiently strong magnetic field to a superconductor will, in general, destroy the superconducting state. Two mechanisms are responsible for this. The first is the Zeeman effect, which breaks apart the paired electrons if they are in a spin-singlet (but not a spin-triplet) state. The second is the so-called 'orbital' effect, whereby the vortices penetrate into the superconductors and the energy gain due to the formation of the paired electrons is lost. For the case of layered, two-dimensional superconductors, such as the high-Tc copper oxides, the orbital effect is reduced when the applied magnetic field is parallel to the conducting layers. Here we report resistance and magnetic-torque experiments on single crystals of the quasi-two-dimensional organic conductor lambda-(BETS)2FeCl4, where BETS is bis(ethylenedithio)tetraselenafulvalene. We find that for magnetic fields applied exactly parallel to the conducting layers of the crystals, superconductivity is induced for fields above 17 T at a temperature of 0.1 K. The resulting phase diagram indicates that the transition temperature increases with magnetic field, that is, the superconducting state is further stabilized with magnetic field.  相似文献   

15.
Organic ferromagnets, which exhibit exchange interactions between unpaired electrons in pi-orbitals, are rare, and the origin of ferromagnetism in these compounds has so far remained unexplained. Tetrakis(dimethylamino)ethylene-fullerene[60] (TDAE-C60) shows a transition to a ferromagnetic state with fully saturated s = 1/2 molecular spins at the relatively high Curie temperature (for organic materials) of 16 K (ref. 4). It has been suggested that the orientations of the C60 molecules may be important for ferromagnetism in this material, but in the absence of structural data at low temperatures there has been little progress towards understanding these microscopic interactions. Here we report the results of a comparative structural study of two different magnetic forms of TDAE-C60 crystals at low temperatures, correlating the structural properties--in particular, the intermolecular orientations--with the magnetic properties. We find that both ferromagnetism and spin-glass-like ordering are possible in this material, and depend on the orientational state of C60 molecules. This resolves the apparent contradictions posed by different macroscopic measurements, and opens the way to a microscopic understanding of pi-electron ferromagnetic exchange interactions in organic materials.  相似文献   

16.
The different degrees of freedom of a given system are usually independent of each other but can in some materials be strongly coupled, giving rise to phase equilibria sensitively susceptible to external perturbations. Such systems often exhibit unusual physical properties that are difficult to treat theoretically, as exemplified by strongly correlated electron systems such as intermediate-valence rare-earth heavy fermions and Kondo insulators, colossal magnetoresistive manganites and high-transition temperature (high-T(c)) copper oxide superconductors. Metal fulleride salts-metal intercalation compounds of C60--and materials based on rare-earth metals also exhibit strong electronic correlations. Rare-earth fullerides thus constitute a particularly intriguing system--they contain highly correlated cation (rare-earth) and anion (C60) sublattices. Here we show, using high-resolution synchrotron X-ray diffraction and magnetic susceptibility measurements, that cooling the rare-earth fulleride Sm2.75C60 induces an isosymmetric phase transition near 32 K, accompanied by a dramatic isotropic volume increase and a samarium valence transition from (2 + epsilon) + to nearly 2 +. The negative thermal expansion--heating from 4.2 to 32 K leads to contraction rather than expansion--occurs at a rate about 40 times larger than in ternary metal oxides typically exhibiting such behaviour. We attribute the large negative thermal expansion, unprecedented in fullerene or other molecular systems, to a quasi-continuous valence transition from Sm(2+) towards the smaller Sm((2+epsilon)+), analogous to the valence or configuration transitions encountered in intermediate-valence Kondo insulators like SmS (ref. 3).  相似文献   

17.
Takahashi H  Igawa K  Arii K  Kamihara Y  Hirano M  Hosono H 《Nature》2008,453(7193):376-378
The iron- and nickel-based layered compounds LaOFeP (refs 1, 2) and LaONiP (ref. 3) have recently been reported to exhibit low-temperature superconducting phases with transition temperatures T(c) of 3 and 5 K, respectively. Furthermore, a large increase in the midpoint T(c) of up to approximately 26 K has been realized in the isocrystalline compound LaOFeAs on doping of fluoride ions at the O2- sites (LaO(1-x)F(x)FeAs). Experimental observations and theoretical studies suggest that these transitions are related to a magnetic instability, as is the case for most superconductors based on transition metals. In the copper-based high-temperature superconductors, as well as in LaOFeAs, an increase in T(c) is often observed as a result of carrier doping in the two-dimensional electronic structure through ion substitution in the surrounding insulating layers, suggesting that the application of external pressure should further increase T(c) by enhancing charge transfer between the insulating and conducting layers. The effects of pressure on these iron oxypnictide superconductors may be more prominent than those in the copper-based systems, because the As ion has a greater electronic polarizability, owing to the covalency of the Fe-As chemical bond, and, thus, is more compressible than the divalent O2- ion. Here we report that increasing the pressure causes a steep increase in the onset T(c) of F-doped LaOFeAs, to a maximum of approximately 43 K at approximately 4 GPa. With the exception of the copper-based high-T(c) superconductors, this is the highest T(c) reported to date. The present result, together with the great freedom available in selecting the constituents of isocrystalline materials with the general formula LnOTMPn (Ln, Y or rare-earth metal; TM, transition metal; Pn, group-V, 'pnicogen', element), indicates that the layered iron oxypnictides are promising as a new material platform for further exploration of high-temperature superconductivity.  相似文献   

18.
Azoz N  Calvert PD  Kadim M  McCaffery AJ  Seddon KR 《Nature》1990,344(6261):49-51
FOR practical applications in optoelectronic devices, nonlinear optical materials should ideally combine appropriate optical properties (that is, a nonlinear response to an electric field, characterized by second-harmonic generation) with the mechanical properties, such as strength and rigidity, required for ease of processibility. As reported here, we have developed a new class of material that combines these attributes, by growing aligned crystals of an optically nonlinear organic compound in a transparent polymer matrix. The host conveys desirable mechanical characteristics to the otherwise fragile organic crystals. The composites are transparent and non-scattering, with a refractive index that can be varied by modification of the polymer host. Given, in addition, the high chemical stability of these materials, we believe that they will have an important part to play in the development of optoelectronic devices.  相似文献   

19.
Organometallics are a family of useful organic chemicals because they play important roles in organic synthesis as reagents and as catalysts.They can be classified according to the number of metals they contain.Bimetallic compounds are important organometallics and they are either homobimetallic or heterobimetallic depending on whether the two metals are the same or different.In this paper,we focus on homobimetallic compounds.Homobimetallic compounds are generally used as dianions to react with electrophiles in organic synthesis.Recently,homobimetallics have also been used as catalysts in organic reactions such as in asymmetric reactions.  相似文献   

20.
卤胺类化合物是一类新型的抗菌剂,它有效地克服了传统抗茵剂在实际应用中的一些缺点,是一类具有杀茵速度快,杀菌效率高,储存稳定,抗茵功效可再生等优点的绿色环保型抗菌剂.近年来,一些新颖的带有键合基团的卤胺前置体已被成功地接枝到各种基体材料如棉纤维、硅胶、聚苯乙烯树脂、聚乙烯、聚氨酯等的表面来制备各种抗菌材料和产品.特别是大孔交联的高分子卤胺抗茵树脂产品Halopure及其相关技术的成功开发,开创了卤胺抗茵材料在饮用水消毒领域应用的新纪元.介绍了该类抗菌材料的抗菌机理、合成与制备方法以及在日常生活各领域中的广泛应用前景,并对其今后的发展趋势作了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号