共查询到20条相似文献,搜索用时 0 毫秒
1.
多目标粒子群优化算法研究 总被引:1,自引:0,他引:1
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望. 相似文献
2.
在多目标粒子群算法中,粒子的飞行由自身的最优位置和指导粒子决定,如何定义适应度选出合适的指导粒子,指导搜索过程向全局Pareto最优区域飞行,并保持种群在最优前端的多样性是算法的关键问题.针对上述问题,构造了同时考虑粒子的Pareto占优情况和目标空间邻近密集度的表现型共享适应度函数,在此基础上提出一个基于表现型共享的多目标粒子群优化算法(MOPSO).为了验证算法的有效性,采用占优等级指标来分析近似解集的占优情况,并采用EPS、HYP和R2指标来衡量解集的分布情况.实验结果表明,算法具有较强的全局搜索能力,能在较小的计算代价下获得较好的Pareto前端近似. 相似文献
3.
基于粒子群优化算法的模糊C-均值聚类 总被引:15,自引:0,他引:15
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高. 相似文献
4.
针对K均值聚类(K-means)算法处理复杂问题时易陷入局部最优值、聚类质量较差等不足,提出一种基于粒子群的三支聚类算法.该算法先以随机产生的聚类中心组合作为初始粒子,构成粒子群;然后,通过调整算法中的速度公式参数,使粒子在迭代过程中能较快速地找出全局最优解,即最优的聚类中心;最后,采用三支决策的方法考察数据与类的关系,把确定归属的数据分配到类的核心域,归属不确定的数据分配到类的边界域.实验结果验证了所提算法的有效性,在寻找全局最优值和聚类结果准确性等方面算法都具有较好的性能. 相似文献
5.
为解决传统模糊聚类迭代算法对初始化敏感,易陷入局部最优及处理高维数据时精度下降的问题,对基于马氏距离的模糊聚类算法(fuzzy c-means algorithm based on Mahalanobis distance,M-FCM)进行优化。将马氏距离代替欧氏距离,通过构造类内紧致度、类间分离度与类间清晰度结合的适应度函数,利用粒子群优化算法(particle swarm optimization,PSO)对马氏距离模糊聚类进行研究,提出了基于粒子群优化的马氏距离模糊聚类算法(Mahalanobis distance fuzzy clustering algorithm based on particle swarm optimization,DPSOM-FCM),并将此新算法与FCM(fuzzy c-means algorithm),M-FCM,PSO-FCM,IFPSOFCM(importance for fuzzy clustering algorithm based on particle swarm optimization)算法,在UCI(university of californiairvine)数据库的6个标准数据集上进行实验对比分析。结果表明,DPSOM-FCM算法具有算法收敛性和聚类有效性,并且聚类精确度优于其他算法,对高维数据的聚类识别能力强,即该算法具有全局优化作用。 相似文献
6.
多目标最优化的粒子群算法 总被引:8,自引:0,他引:8
粒子群算法是一种新出现的进化算法,相对其它进化算法,它收敛速度快、规则简单、易于编程实现.采用粒子群算法对资产投资的多目标问题进行优化,解决了传统方法难以解决的问题.数值实例表明,采用该算法能对资产投资问题做出优化组合决策. 相似文献
7.
基于密集距离的多目标粒子群优化算法 总被引:3,自引:2,他引:1
设计出基于密集距离的多目标粒子群优化算法(CMPSO),该算法根据密集距离大小按轮盘赌方式为每个粒子从外部档案选取全局最好位置并采用基于密集距离的方法对外部档案进行维护.将算法应用于3个复杂的测试实例,并与强度Pareto进化算法2等算法进行比较,计算结果表明CMPSO具有良好的连续优化能力. 相似文献
8.
基于多目标粒子群优化算法的输电网规划 总被引:3,自引:0,他引:3
输电网规划是一个离散型、非线性、多目标的混合整数规划问题,难于求解.提出一种多目标粒子群优化算法用来求解输电网规划问题.在输电网规划模型中考虑了建设投资费用、运行费用及网损费用等3方面的因素.多目标粒子群优化算法基于Pareto支配关系来更新粒子的个体极值,并采用了精英归档技术,粒子的全局极值由档案库中的非劣解提供.使用Matlab7.1对Garver-6节点系统进行仿真计算,结果表明:与传统的单目标遗传算法相比,多目标粒子群优化算法获得的规划方案总费用更低,该方法可以提高输电网规划的经济性水平. 相似文献
9.
一种离散型多目标粒子群优化算法 总被引:1,自引:0,他引:1
杨晓燕 《莆田高等专科学校学报》2010,(2):61-65
为获得更好的非劣前端,提出一种离散型多目标粒子群优化算法。该算法根据离散型多目标优化问题的特点,将种群分成多个子种群,在各个子种群中利用表现型共享的适应度函数选择每个子种群的最优粒子。通过多个最优粒子的引导,使整个种群分布更均匀,避免陷入局部最优,保证了解的多样性。实验表明了该算法的有效性。 相似文献
10.
基于模糊聚类的粒子群优化算法 总被引:3,自引:0,他引:3
粒子群优化算法(PSO)的基础上,提出了基于模糊C-均值聚类(FCM)算法的粒子群优化算法.该算法在每次迭代过程中首先通过FCM算法把粒子群体分成若干个子群体,然后粒子群中的粒子根据其个体极值和子群中的最优粒子更新自己的速度和位置值.通过典型复杂函数测试表明,基于模糊C-均值(FCM)的粒子群优化算法的优化性能和效率远远超过基本粒子群优化算法. 相似文献
11.
为了有效地简化稠密采样点模型,提出了一种基于粒子群优化聚类算法的点模型简化方法.引入了具有强大全局寻优能力的粒子群优化算法,对传统的k-均值聚类算法进行改进,基于改进的聚类算法对点模型进行简化,选取具有最优个体适应度函数的粒子作为原始采样点集的最终简化模型.算法聚类依据采样点的空间位置、法向和曲率的邻近性,实现了点模型表面区域几何特征保持的简化.同时在聚类区域的划分中考虑了曲率阈值和区域半径,使得算法在有效地保持特征边界和曲面细节的同时,能够生成高质量的简化曲面.实验结果表明,粒子群优化的k-均值聚类算法克服了传统聚类算法容易陷入局部极小的缺点,具有更好的全局收敛性和较快的收敛速度.该简化方法在有效简化点模型的同时,很好地保持了原始模型的几何形状,且在相同简化效率下能够生成更高质量的简化曲面. 相似文献
12.
穆瑞辉 《新乡学院学报(自然科学版)》2013,(4):277-279
定义一个确定聚类数K和初始数据中心的算法,将由算法得到的初始数据中心作为初始粒子,用粒子群优化算法寻优,获得最优数据中心;使用模糊K-Means算法,采用最优数据中心进行聚类.在UCI数据集上的实验结果表明,算法能准确实现分类,具有较强的全局寻优能力和较快的收敛能力,寻优时间较少,能有效地解决目标分类问题. 相似文献
13.
为了利用粒子群优化算法解决作业车间调度问题,提出了将调度问题转化为连续优化问题的有效策略;设计了Pareto档案粒子群算法(PAPSO),该算法将档案维护和全局最好位置选取结合在一起,在档案维护过程中为每个粒子选取全局最好位置;给出了变异与PAPSO的结合新策略;最后将PAPSO和带变异的PAPSO应用于15个调度实例,以最小化总拖后时间和最大完成时间,与强度Pareto进化算法2等算法进行比较,结果验证了PAP—SO在作业车间调度方面的良好性能. 相似文献
14.
把免疫系统的免疫信息处理机制引入到粒子群优化(PSO)算法中,并与模糊C均值(FCM)算法相结合提出一种新的模糊聚类算法.新算法用免疫粒子群优化算法代替FCM算法的基于梯度下降的迭代过程,使算法具有较强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷,同时也降低了FCM算法对初始值的敏感度.采用对当基思想初始化种群,获得更优的初始候选解,提高算法聚类过程中的收敛速度.以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,该算法优于基于PSO的模糊C均值聚类算法和FCM算法. 相似文献
15.
为解决中点钳位型三电平牵引逆变器存在的中点电位不平衡以及由此而引起的输出电流谐波无法同时得到有效控制问题,提出了一种基于粒子群算法的牵引逆变器多目标优化控制策略。首先建立谐波抑制和中点电位平衡控制变量的数学模型;然后以输出电流谐波总畸变率最小为目标,以中点电位波动幅值尽可能小为约束条件,采用罚函数法构建了多目标优化模型。通过粒子群算法进行优化求解,实现在有效抑制输出电流谐波的同时最大程度降低中点电位波动幅值。仿真和实验结果验证了所提多目标优化控制策略的有效性。 相似文献
16.
针对铅锌烧结过程综合透气性、烧结终点的优化具有强非线性、计算复杂等特点,提出了一种有效的多目标粒子群协同优化算法。首先,建立了有综合透气性、烧结终点两个目标的优化模型。接着,通过改进的约束比较方法、粒子极值选取方法,以及利用不同的粒子群来分别优化相应的变量,提出了一种改进的多目标粒子群协同优化算法。最后,利用提出的多目标优化算法进行综合透气性、烧结终点的优化。仿真结果表明,所提出的多目标优化算法能较好地解决综合透气性、烧结终点的优化问题。 相似文献
17.
本文描述了一种新颖的基于粒子群的多目标优化方法,即自适应多目标粒子群优化。该算法采用自适应的方法,使惯性权重和加速度系数随时间的变化而改变,从而有助于算法更有效的探索搜索空间。对三个典型多目标测试函数所作实验的结果验证了该方法的有效性和快速性。 相似文献
18.
基于粒子群优化的模糊核聚类方法 总被引:1,自引:0,他引:1
针对模糊核聚类对初始值敏感、易陷入局部最优的缺点,提出了基于粒子群优化的模糊核聚类方法.该方法根据聚类准则设计适应度函数,利用粒子群优化算法对聚类中心进行优化,在迭代优化过程中设计了梯度下降法加快算法的收敛速度,并引入变异机制增强粒子群的多样性.仿真实验及在水轮机转轮叶片裂纹源定位中的应用验证了算法的可行性和有效性. 相似文献
19.
当前不确定动态多目标优化方法通常将多目标问题转换成单目标问题,将其它目标看作约束条件,仅可得到单个解,无法有效体现不确定多目标之间的关系,导致得到的解质量低。为此,提出一种新的基于粒子群算法的不确定动态多目标优化方法,给出不确定动态多目标优化问题的数学描述,介绍了粒子群算法,针对粒子群算法容易陷入局部最优的弊端,引入动态变异算子对其进行改进,通过改进的位置更新公式实现粒子群算法位置的自适应更新,给出解决不确定多目标优化问题的详细过程,在此基础上,通过分段线性函数参数化实现不确定动态多目标优化。实验结果表明,所提方法搜索能力强,采用所提方法得到的解与真实解最相近,质量最高。 相似文献
20.
基于粒子群优化和SOM网络的聚类算法研究 总被引:2,自引:0,他引:2
利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性. 相似文献