首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于自适应惯性权重的混沌粒子群算法   总被引:2,自引:0,他引:2  
针对粒子群优化(particle swarm optimization,PSO)算法易陷入早熟的缺陷,提出了一种基于自适应惯性权重的混沌粒子群算法。首先利用立方映射产生的混沌序列对粒子位置进行初始化,为全局搜索的多样性奠定基础;然后采用自适应惯性权重优化策略,提高收敛速度;最后如果判断算法陷入早熟,则对算法进行混沌扰动,使其跳出局部最优。仿真实验结果表明,改进算法的收敛速度及收敛精度都有明显提高,能有效地避免早熟。  相似文献   

2.
粒子群算法是美国学者受鸟类觅食行为启发提出的一种群体优化算法,在迭代后期易早熟收敛.为此利用混沌运动的随机性、规律性和遍历性的特点对粒子群算法进行优化,提出了一种惯性权重自适应改变的混沌粒子群算法.在算法中对惯性权重进行调整加快算法前期收敛速度,而且加入了变异操作以帮助粒子后期跳出局部极小.最后用测试函数进行仿真实验,结果表明该算法收敛快,寻优能力强,寻优精度高.  相似文献   

3.
针对粒子群分簇路由优化算法存在的收敛速度慢、 易陷入局部最优等问题, 提出一种混沌-量子粒子群 的双子粒子群分簇路由算法。 该算法以簇头的能量、 簇头与汇聚节点的距离以及与簇内成员节点的距离构造 最优簇头的代价函数, 主粒子群利用混沌粒子群寻优, 辅粒子群利用量子粒子群寻优, 加入量子波动理论, 使 算法具有较好的全局收敛性。 双子粒子群采用收敛速度快的凹函数递减策略优化权重。 仿真结果验证了该算 法可使无线传感网络节点能量消耗均衡化, 显著延长网络生命周期, 与 LEACH(Low-Energy Adaptive Clustering Hierarchy)协议、 PSO-C(Cluster setup using Particle Swarm Optimization algorithm)协议相比生命周期分别延长了 80. 1%和 41. 4%。  相似文献   

4.
粒子群优化算法本质上是一种全局随机优化技术,优化性能高但容易陷于局部最优,并且算法性能很大程度上依赖于参数设置。本文对该算法的3个控制参数进行数据实验和调查,分析参数设置对算法性能的影响规律,提出一种改进的粒子群优化算法,该算法在迭代的每一代中,惯性权重和加速系数都是在一定范围内随机产生:ω=rand(0.4,0.7),C1=rand(0.5,3.0),C2=rand(1,3.5)。由于该算法的控制参数不再固定取值;而且在一定范围内随机产生,从而增强了算法的多样性和遍历性,能够有效避免算法早熟收敛。通过标准函数的测试,验证了该算法性能优于固定参数粒子群算法和随机加速系数粒子群算法,具有更好的收敛性和稳定性。  相似文献   

5.
网络规模不断扩大的同时,也容易受到各种安全风险的威胁,因此,必须对网络安全风险进行准确评估。传统的评估系统中存在的趋势性、周期性以及随机性影响评估准确率的问题,导致评估的结果大都不准确;为此,提出并设计了基于混沌粒子群优化BP神经网络的网络安全风险评估系统。首先对系统的硬件进行了设计,并得出了设计的框图;然后使用混沌粒子群的优化算法和BP神经网络的算法对系统的软件进行了设计;最后进行了对比的实验。实验结果表明,该系统能够更好的协调,并处理评估过程中出现的问题,不会受到趋势性、周期性以及随机性的影响,能够更好的发挥网络安全评估的效果,提高评估的准确率,减小相对的误差。  相似文献   

6.
针对带有收缩因子的粒子群优化算法(CFPSO)容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化(sCFPSO)方程与混沌搜索技术相结合的方法,提出了基于混沌搜索的简化粒子群优化(CsCFPSO)算法.该算法利用分段线性混沌映射(PWLCM)的遍历性和类随机性来完成混沌搜索,从而加快sCFPSO算法跳出局部极值点而继续优化.经过6个经典测试函数对该算法进行实验,结果表明其对于粒子群优化具有很好的使用价值,它可以准确地消去局部极值,确保收敛速度和精度,该算法是通过缩小种群数和进化代数来实现的.  相似文献   

7.
粒子群算法惯性权重的研究   总被引:1,自引:0,他引:1  
粒子群算法惯性权重ω的设置其极重要,直接影响算法性能.本文利用云发生器对惯性权重进行调整,对其取值范嗣做了进一步的研究,并应用于粒子群算法的改进.以高维函数优化为实例,实验仿真结果表明,新算法的全局搜索能力、收敛速度,精度和稳定性均有了显著提高.  相似文献   

8.
分析了基本粒子群优化(PSO)算法易于发生早熟收敛的原因,在此基础上提出了一种混沌粒子群优化(CPSO)算法根据个体适应值自适应调整粒子的位置分布,既保证了收敛速度又兼顾了全局收敛性,仿真结果表明该算法比基本粒子群算法有更优的性能。  相似文献   

9.
将粒子群算法与模糊神经网络结合起来提出了一种粒子群模糊神经网络控制器,先用粒子群算法对模糊神经控制器进行离线训练,然后用BP算法对模糊神经控制器进一步在线训练,仿真结果表明该控制器比模糊神经控制器取得了更好的控制效果。  相似文献   

10.
距离修正的混沌粒子群多维标度定位算法   总被引:2,自引:0,他引:2  
针对不规则网络以及网络空洞造成估计距离与欧氏距离相差较大,导致定位精度不足这一问题,提出一种距离修正的混沌粒子群多维标度定位算法(CMDS-CPSO).首先通过递推策略计算节点对距离,利用接收信号强度对距离加权修正,以减少距离误差,回避网络空洞问题.然后采用混沌粒子群算法对坐标转化参数问题进行优化,进一步降低坐标转换中参数所带来的影响.通过对比SPSO-MDS算法与MDS-DMC算法,仿真结果表明,距离修正的混沌粒子群算法能够明显改善节点定位精度,具有更好的鲁棒性和对不规则网络的适应性.  相似文献   

11.
基于粒子群优化的过程神经网络学习算法   总被引:3,自引:0,他引:3  
基于粒子群优化为过程神经元网络提出了一种新的学习算法。新算法在对网络输入函数和连接权函数进行正交基函数展开后,将网络中的结构参数和其他参数整合成一个粒子,再用粒子群优化算法进行全局优化。新算法不依赖于函数梯度信息,不需要手动调节网络结构。粒子群优化具有良好的全局优化性能和收敛性能,保证了过程神经元网络的全局学习能力和新学习算法的收敛能力,更好地发挥过程神经网络的逼近性能。两个实际预测问题的实验结果表明,基于粒子群优化的学习算法比现有的基于梯度的基函数展开方法以及误差反传神经网络模型具有更好的预测精度。  相似文献   

12.
细胞神经网络(Cellular Neural Network,CNN)具有能够高速并行计算,易于硬件实现等特点,使其在未来的图像处理方面展现出了广阔的应用前景.CNN较好地探测出图像中边缘的关键在于设计出一组较好的模板参数.提出一种基于混沌粒子群优化算法求解模板参数的方法,一方面,避免了分析细胞神经网络动态性能的一系列复杂过程;另一方面,通过将搜索过程映射为对混沌轨道的遍历过程,可以使得搜索过程避免陷入局部极小,并且在模板参数的范围内能快速找到最优模板值.仿真实验表明,利用该方法设计出来的CNN去探测图像中的边缘比已有结果和利用几种经典边缘提取算子得到的边缘结果更加精确.  相似文献   

13.
针对粒子群算法在迭代后期易陷入局部最优的不足,采用Tent映射所产生的混沌序列在粒子个体最优点和全局最优点附近进行混沌搜索,利用混沌搜索的全局遍历性和随机性提高了粒子群优化算法的全局搜索能力和抗早熟收敛性能。几个典型测试函数的仿真结果证明了该算法的可行性。  相似文献   

14.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性.  相似文献   

15.
流水车间调度问题广泛存在于企业生产过程中,优化的调度方案可以提高企业生产效率,降低生产成本。提出了基于混沌量子粒子群优化算法并应用于求解置换流水车间调度问题,该算法在量子粒子群算法(QPSO)的基础上,引入了混沌机制,在保持QPSO算法收敛速度快的同时,利用混沌机制的遍历性,克服了QPSO易陷入局部极小值的缺点。同时提出了一种新的混沌变量到工件排序的编码方案,能够完整保留混沌的遍历性。仿真结果验证了所提出的新的调度算法能更好地探索更优解,同时不失去量子粒子群算法的收敛速度。  相似文献   

16.
根据灰色神经网络的参数随机选择类似于粒子群算法中的粒子初始空间位置,采用改进粒子群算法代替梯度修正法,对网络参数进行了处理,并通过寻找粒子群算法中的最优个体,建立了基于改进粒子群算法的灰色神经网络,提高了预测模型的稳健性和精度.通过解决短期订货量问题,与反向传播(BP)神经网络、灰色神经网络、没有改进的粒子群灰色神经网络算法和基于遗传算法的灰色神经网络等方法进行了比较.分析结果表明,基于改进粒子群算法的灰色神经网络计算更为方便,并具有更好的逼近能力和预测精度.为优化网络模型参数提供了一种新方法,并拓展了预测模型的研究思路.  相似文献   

17.
一种动态惯性权重的自适应粒子群优化算法   总被引:1,自引:0,他引:1  
在标准粒子群算法中,权重过大导致最优点的搜寻能力降低,不能适应复杂的非线性优化搜索过程,动态惯性权重的自适应粒子群算法(APSO)解决了这一问题。在该算法中,粒子群中所有粒子适应度的整体变化可以跟踪粒子群的状态,在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应性。通过对几种典型函数的测试结果表明,APSO算法的收敛速度和收敛精度明显优于LDW算法,从而提高了算法的性能。  相似文献   

18.
通过对标准粒子群优化算法中惯性权重的分析和对耗散理论的研究,提出了一种惯性权重正弦调整的耗散粒子群优化算法(S-DPSO),并对该算法进行了深入的分析和研究.通过对4个典型函数的仿真测试,试验结果表明S-DPSO在收敛速度和全局收敛性方面都比标准粒子群优化算法、随机惯性权重粒子群优化算法、惯性权重正弦调整粒子群优化算法、耗散粒子群优化算法和随机惯性权重耗散粒子群优化算法有明显改进.理论分析和仿真试验验证了S-DPSO的正确性和有效性.  相似文献   

19.
针对粒子群算法固定惯性权重和早熟收敛的缺陷,提出一种动态自适应惯性权重调整策略,有效增强了算法的全局和局部寻优能力;并针对早熟问题,采用混沌映射方法增加种群多样性,同时利用负梯度方向调整群体极值,极大降低了算法陷入局部极值的概率.通过在多个常用测试函数上与其他算法比较,证明了所提改进粒子群算法的正确性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号