首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
半监督聚类通过利用少量有标号样本或成对约束等监督信息来提高聚类性能.在此提出一种新颖的基于半监督降维的聚类算法,首先用半监督降维方法对原始数据进行降维,然后在降维后的空间中进行半监督聚类.由于在降维和聚类两个阶段中都利用了监督信息,从而使得算法的聚类性能得到进一步提升.在UCI标准数据集、yale人脸库以及文本数据集上的实验结果验证了该算法的有效性.  相似文献   

2.
提出了一种拓展的半监督模糊聚类模型,给出求解这个模型的迭代公式.这种半监督聚类能够合理、有效地利用部分已标识样本的类别信息对未标识样本产生影响,从而提高半聚类算法的聚类效果.其隶属度和聚类中心的迭代公式具有和FCM算法一样简洁的表示.在黄瓜数据集上的聚类分析表明,新提出的半监督聚类优于未改进的两种半监督算法、FCM算法和线性判别方法.  相似文献   

3.
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集...  相似文献   

4.
通过将半监督学习的思想引入到模糊C-均值聚类方法中,提出一种基于半监督的模糊C-均值聚类算法,有效解决了模糊C-均值聚类算法随机选取初始聚类中心导致聚类结果局部收敛的问题,能客观获取最佳聚类数目和初始聚类中心.实验结果表明,与传统模糊C-均值聚类算法相比,基于半监督的模糊C-均值算法在一定程度上减少了迭代次数,降低了对初始聚类中心的依赖性.  相似文献   

5.
半监督学习是近年来机器学习领域中的一个重要研究方向,其监督信息的质量对半监督聚类的结果影响很大,主动学习高质量的监督信息很有必要.提出一种纠错式主动学习成对约束的方法,算法通过寻找聚类算法本身不能发现的成对约束监督信息,将其引入谱聚类算法,利用该监督信息来调整谱聚类中点与点之间的距离矩阵.采用双向寻找的方法,将点与点间距离进行排序,使得学习器即使在接收到没有标记的数据时也能进行主动学习,实现了在较少的约束下可得到较好的聚类结果.同时,该算法降低了计算复杂度,并解决了聚类过程中成对约束的奇异问题.通过在UCI基准数据集以及人工数据集的实验表明,算法的性能好于相关对比算法,并优于采用随机选取监督信息的谱聚类性能.  相似文献   

6.
针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Kmeans;其次将主动学习算法引入到SC-Kmeans中,以尽量小的代价选取信息含有量更高的监督信息,提高SC-Kmeans算法的聚类精度;最后在UCI标准数据集上进行仿真实验.实验结果表明,该算法取得了较好的聚类效果,有效提高了聚类准确率.  相似文献   

7.
提出了一种混合约束的半监督聚类算法HCSCAP,综合考虑了已标号点和成对点约束信息,使2类先验信息在聚类的过程中能发挥各自的作用.通过调整相似性矩阵添加成对点约束,已标号点以宏结点的方式添加到相似性矩阵.给出了具体的算法步骤并进行了测试,实验表明:HCSCAP比只利用成对点约束信息的SAP算法和只利用标号点的SS-CA...  相似文献   

8.
通过将类间分离度函数引入到模糊C-均值聚类算法中,结合半监督的思想,建立基于信息熵的半监督模糊C-均值聚类模型,并对该模型的求解过程进行推导,提出一种新的算法.为了验证算法的有效性,将该算法在UCI数据集上进行实验,实验结果表明,该算法比仅引入信息熵的模糊C-均值聚类方法聚类性能更好.  相似文献   

9.
传统模糊C-means聚类(FCM,fuzzy C-means)在处理非平衡数据集时,由于相异类中所含样本数量差异较大,导致类间权值不平衡和均匀效应,从而易产生聚类错误.另外,FCM属于无监督方法,无法更好地利用已知的部分类标记信息引导聚类.为解决这两方面问题,提出一种半监督的平衡化模糊C-means聚类(SBFCM,semi-supervised balanced fuzzy C-means)方法.SBFCM在FCM目标函数的基础上加入了对聚类模糊隶属度矩阵的近似正交约束和半监督约束,从而得到了新的聚类目标函数.实验结果表明,相比于FCM,SBFCM能有效缓解由均匀效应导致的聚类错误现象,并能有效地利用部分先验类标记信息,从而可获得更好的聚类效果.  相似文献   

10.
针对伪相关反馈模型反馈文档信息质量差和扩展词选择不适产生的漂移现象等问题,提出了一种基于约束的半监督聚类查询扩展方法。该方法对初检结果的前k个文档进行人工标注,分成相关文档与不相关文档两类;并利用一种半监督聚类算法对初检结果的前”个文档进行分析,提取出与查询相关的文档作为反馈文档。该方法通过对少量标注文档与查询相关性的学习,能够较准确地估计出大量未知文档与查询的相关性,提高反馈文档的质量,从而有效提高检索的查全率和查准率。实验结果表明,该方法比传统的伪相关反馈和基于无监督聚类的伪相关反馈有更优的检索性能。  相似文献   

11.
模糊核聚类算法已广泛应用于图像分割领域,然而该算法对初始值的选取、噪声以及图像灰度不均匀比较敏感。针对该问题,提出了一种改进的模糊核聚类图像分割算法。将改进的最大类间方差法(Otsu)引入模糊核聚类算法中,结合图像的概率信息和空间信息,得到了一种高效、实用的图像分割方法。实验结果表明,改进算法具有较强的抗噪能力,较高的分割精度,可以用于工程实际。  相似文献   

12.
欧杨梅  王毅  严欣  齐敏 《科学技术与工程》2012,12(7):1535-1538,1543
模糊核聚类算法已广泛应用于图像分割领域,然而该算法对初始值的选取、噪声以及图像灰度不均匀比较敏感.针对该问题,提出了一种改进的模糊核聚类图像分割算法.将改进的最大类间方差法(Otsu)引入模糊核聚类算法中,结合图像的概率信息和空间信息,得到了一种高效、实用的图像分割方法.实验结果表明,改进算法具有较强的抗噪能力,较高的分割精度,可以用于工程实际.  相似文献   

13.
模糊C-均值聚类算法通过迭代的爬山技术来寻找问题的最优解,是一种局部搜索算法,容易受初始值的影响而陷入局部极小值.遗传算法是一种应用广泛的全局优化算法,是一种与求解问题无关的算法模式,能够有效解决模糊C-均值聚类算法对初始化敏感的问题,利用改进后的遗传算法能更好地解决聚类问题.  相似文献   

14.
传统基于目标函数法的模糊聚类算法是一种迭代的"爬山"算法,容易陷入局部最优解.提出了基于遗传算法与禁忌搜索结合的模糊聚类算法,综合运用遗传算法的多出发点和禁忌搜索的记忆性来改善聚类的效果,并通过迭代的遗传禁忌搜索算法产生最优聚类中心,实验中分别通过人工数据和标准数据测试验证了该算法的有效性.  相似文献   

15.
一种基于改进型遗传算法的模糊聚类   总被引:4,自引:0,他引:4  
针对模糊C均值算法(FCM算法)难以达到全局最优解的问题,引入了具有全局搜索能力的遗传算法以解决聚类问题,并在标准遗传算法基础上进行了改进。将该算法运用于IR IS数据的聚类,实现了较好的聚类,从而验证了算法的有效性。  相似文献   

16.
传统基于目标函数法的模糊聚类算法是一种迭代的“爬山”算法,容易陷入局部最优解.提出了基于遗传算法与禁忌搜索结合的模糊聚类算法,综合运用遗传算法的多出发点和禁忌搜索的记忆性来改善聚类的效果,并通过迭代的遗传禁忌搜索算法产生最优聚类中心,实验中分别通过人工数据和标准数据测试验证了该算法的有效性.  相似文献   

17.
基于模糊聚类方法的T-S模糊系统建模   总被引:4,自引:0,他引:4  
提出了用一个聚类验证准则设计模糊C均值聚类算法,这个聚类验证准则是用来确定模糊C均值算法中合适的聚类数.针对T—S模糊模型,由模糊c均值聚类算法确定其逻辑前件参数,进而采用最小二乘算法确定模糊推理规则的后件参数.最后,应用本文建模方法对一个非线性实例进行仿真计算,并与其它方法进行了比较,结果表明本文方法是有效的.  相似文献   

18.
通过将粗糙集和模糊聚类算法相结合, 利用粗糙集中上近似集和下近似集的概念改进模糊聚类算法, 解决了模糊聚类边界不确定的问题, 得到了上近似集和下近似集的聚类结果, 从而实现更好的聚类, 改进算法可以处理边界问题和复杂数据问题. 将改进的粗糙集模糊聚类算法用于研究环糊精聚类, 并将聚类结果与K均值聚类分析算法、 模糊C均值聚类算法相比, 实验结果表明, 改进算法有较好的聚类效果.  相似文献   

19.
聚类算法是多元统计的一个重要分支,在理论和实际生活中都有重要的意义。本文对聚类算法的发展历程以及近年来发展的一些聚类算法进行研究。  相似文献   

20.
现有模糊聚类算法存在运算量大,速度慢等特点,限制了模糊聚类的运用,在对模糊相似矩阵和模糊等价矩阵的性质研究后,提出了一种模糊聚类的快速算法,以减少运算量,提高运算速度。实验证明,新的算法运算量减少约一半,速度达到传统的模糊聚类算法的2.4倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号