首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
CaO-MgO-CaF2-Al2O3-SiO2五元渣系粘度的计算模型   总被引:3,自引:0,他引:3  
依据炉渣结构的共存理论和五元渣系CaO-MgO-CaF2-SiO2-Al23在不同温度和成分下的实测粘度值,制定了本渣系的作用浓度和粘度计算模型,计算结果符合实际,证明计算模型可以反映CaO-MgO-CaF2-Al2O3-SiO2渣系的实际结构与粘度、结构单元的作用浓度及温度之间的正确关系。  相似文献   

2.
根据炉渣结构的共存理论与CaO-SiO2-TiO2三元渣系在不同湿度和TiO2 成分下粘度的文献值,建立了此三元渣系的作用浓度和粘度计算模型。在模型计算过程中,采用MATLAB编制相应的计算程序,并绘制了1400℃、1500℃在碱度R=0.9-1.0之间、不同TiO2含量下,渣系的粘度随TiO2百分含量变化的曲线。结果表明TiO2含量增加,其作用浓度增加,CaO-SiO2-TiO2三元渣系的粘度下降,并且温度升高粘度降低,计算值与实测值有很好的一致性,从而说明模型的合理性。  相似文献   

3.
根据炉渣结构的共存理论与不同温度和成分下MnO-Sio2,MgO-SiO2和CaO-Al2O3-SiO2三渣系的实测粘度,制定了这些渣系的粘度计算模型,计算结果符合实际,证明这些模型可以正确地反映相应渣系粘度与各结构单元作用浓度和温度间的关系。  相似文献   

4.
CaO-FeO-Fe2O3-SiO2-Cu2O渣系作用浓度计算模型   总被引:2,自引:0,他引:2  
基于炉渣结构共存理论,建立1 523~1 733 K时的CaO-FeO-Fe2O3-SiO2-Cu2O五元渣系作用浓度计算模型,对成分(质量分数)波动范围为CaO 5%~20%,FeO 5%~50%,Cu2O 5%~25%,SiO2 5%~45%,Fe2O3 5%~70%的炉渣,计算1 523和1 573 K时的各组元作用浓度,考察碱度和温度对活度系数和的影响,并对所得数据进行非线性回归分析.研究结果表明,理论计算值与文献实测值之间的相对误差小于10%,且随渣含铜增加呈直线上升的趋势一致,说明模型能较好地反映本渣系的结构本质;CaO能降低炉渣的溶铜能力,增强炉渣的溶铁能力.该模型的建立为采用铁酸钙渣系的炼铜新工艺热力学研究提供了理论依据.  相似文献   

5.
CaO-Al2O3-SiO2熔渣表面张力的计算模型   总被引:1,自引:0,他引:1  
根据炉渣结构的共存理论与CaO-Al2O3-SiO2熔渣在不同温度和成分下实测表面张力值,制定了本渣系表面张力与熔渣各结构单元作用浓度及温度间关系的计算模型,计算结果符合实际,证明该模型可以反映本渣系表面张力随熔渣作用浓度和温度而变化的规律。  相似文献   

6.
以炉渣结构的共存理论为基础,通过对MnO-SiO2渣系结构单元的确定、热力学数据的选取以及结合线性回归的方法,建立了MnO-SiO2渣系在1400 ̄1600℃温度和一定浓度范围内的物理性质(粘度、表面张力和电导率)的计算模型。在上述范围内模型计算的理论数值与文献的实测结果符合良好,而且比目前应用的炉渣物理性质的经验或半经验公式更为系统和精确。  相似文献   

7.
根据石钢生产条件,研究了CaO、SiO2、Al2O3和MgO四元渣系脱硫性能,实验结果表明:炉渣碱度在1.10-1.20之间,MgO≯10%,Al2O3≯15%时能获得最佳的脱硫效果。  相似文献   

8.
9.
通过对低碳含铝钢20Mn2精炼过程的取样分析,得出精炼渣的熔化温度偏高,渣中存在大量固相CaO,并导致钢中含有CaO类夹杂物,精炼渣吸附夹杂物能力差. 利用FactSage热力学计算,从渣的低熔点区域控制和渣-钢反应这两个方面对渣系进行研究与优化. 结果表明,CaO/Al2 O3 质量比在1. 5左右添加质量分数为3% CaF2 可以有效降低渣的熔化温度,渣的熔化温度随着CaF2 含量的升高呈现先降低后升高的趋势,MgO的质量分数控制5%左右低熔点区域面积达到最大. 在SiO2 质量分数大于30%区域,钢中氧含量大体上随着CaO/Al2 O3 质量比的增加而降低,在SiO2 的质量分数低于30%区域随着CaO含量的升高而降低,钢中酸溶铝含量在SiO2 含量高的区域随着Al2 O3/SiO2 质量比的增加而升高,在SiO2 含量低的区域随着CaO/SiO2 质量比的增加而增加. 根据热力学分析结果得出合理的渣系范围:CaO 50% ~60%, Al2 O3 20% ~35%, SiO2 5% ~10%, MgO 5% ~8%, CaF2 0~5%. 优化渣系的实验结果表明,优化后渣系熔化温度降低,钢中夹杂物数量、面积和平均尺寸均有明显下降.  相似文献   

10.
根据熔渣结构的分子离子共存理论,建立了CaO-SiO2-Al2O3-FeO-CaF2-La2O3-Nb2O5-TiO2八元渣系的活度计算模型.利用该活度模型,计算和分析了此渣系中铌、稀土、钛相关组元的活度变化规律.实验结果表明,模型计算结果与实际测量值能较好吻合;在本实验渣系条件下,含铌组元主要为FeO·Nb2O5,含...  相似文献   

11.
FeO—Fe_2O_3—SiO_2渣系的作用浓度计算模型   总被引:1,自引:0,他引:1  
根据共存理论的基本观点,从FeOn—SiO_2渣系的相图和粘度数据及FeOn—Fe_2O_3相图确定了本渣系的结构单元为Fe~(2+),O~(2-)简单离子和SiO_2,Fe_2O_3,Fe_3O_4及Fe_2SiO_4分子。在此基础上利用Fe_2SiO_4和Fe_3O_4的标准生成自由能数据推导了计算Feo—Fe_2O_3—SiO_2渣系各组元作用浓度的模型。 计算的NFe_tO与实测的αFe_tO符合,且NFe_tO、NSiO_2、NFe_2SiO_4和炉渣总质点数∑n随B_1=∑nFeO/∑nSiO_2而改变,而NFe_2O_3和NFe_3O_4随B_2=∑nFeO/∑nFe_2O_3而改变,表明Fe_2SiO_4和Fe_3O_4的混合是理想的,两者间的相互影响是不大的。  相似文献   

12.
MnO-SiO_2渣系作用浓度的计算模型   总被引:4,自引:4,他引:0  
根据炉渣结构的共存理论用回归分析法确定了MnSiO_3和Mn_2SiO_4是存在于MnOSiO_2渣系中且参加其内部化学反应的组元。由此得出本渣系的结构单元为Mn~(2+),O~(2-)简单离子和SiO_2,Mn_2SiO_3,Mn_2SiO_4分子,进而推导出本渣系各组元作用浓度的计算模型。 在1600℃下计算的N_(MnO)与实测a_(MnO)一致;但在高MnO含量和低温度下两者间表现出差别,这是由于MnO-SiO_2渣系中出现两相共存的现象,使系统远离平衡所致。  相似文献   

13.
14.
CaO-SiO_2渣系作用浓度的计算模型   总被引:1,自引:1,他引:1  
根据炉渣结构的共存理论和CaO-SiO_2渣系相图制定了不同温度区间的作用浓度计算模型。在炼钢温度下计算结果表明,考虑2个硅酸盐(CaSiO_3和Ca_2SiO_4)或3个硅酸盐(CaSiO_3,Ca_2SiO_4和Ca_3SiO_5)的计算模型都是合用的。比较不同计算方案结果证明,用本文回归所得的热力学数据比用文献数据更能符合实际,所以对文献数据应进一步研究。硅酸盐作用浓度的最大值与相图中固液相同成分熔点的位置一致,说明硅酸盐对本渣系的熔点具有极为重要的影响,炉渣总质点数随碱度而变化中出现最小值的原因是炉渣中进行了多个结构质点结合成一个分子的反应。  相似文献   

15.
Fe—Al系金属熔体作用浓度的计算模型   总被引:1,自引:0,他引:1  
根据含化合物金属熔体的共存理论和Fe-Al系相图,用回归分析法确定了Fe-Al系金属熔体在1315℃和1600℃时的结构单元,进而推导了各组元的作用浓度模型。将计算的N_(Fe),N_(Al)和实测的活度值α_Fe,α_Al相比较,得到了比较满意的结果。  相似文献   

16.
高炉渣系各组元活度对高炉冶炼和产品质量具有重要的影响作用. 基于分子-离子共存理论,建立CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型;结合试验测定值对其进行验证与修正,最终建立了修正的CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型;同时,依据模型计算结果探究R(w(CaO)/w(SiO2)),w(MgO)/w(Al2O3)和w(Al2O3)对Al2O3活度的影响. 研究结果表明:修正后的CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型具有较高的预测精度,能够很好地预测熔渣Al2O3活度;当w(MgO)/w(Al2O3)=0.40,w(Al2O3)=20%时,随着R增加,Al2O3活度逐渐减小;当R=1.25,w(Al2O3)=20%时,随着w(MgO)/w(Al2O3)增加,Al2O3活度逐渐减小;当w(MgO)/w(Al2O3)=0.40,R=1.25时,随着w(Al2O3)增加,Al2O3活度逐渐增大.  相似文献   

17.
CaO-Al2O3-CaF2-SiO2渣系的黏度   总被引:2,自引:0,他引:2  
采用内旋转圆柱法测量了不同组成的CaO-Al2O3-CaF2-SiO2渣系的黏度,采用XRD分析技术对高温熔炼渣的物相进行分析,并计算了各渣样的黏流活化能.结果表明:当w(CaO)/w(Al2O3)一定,配渣中SiO2质量分数低于8%时,对渣样的高温黏度并没有明显的影响,在1 490℃以上时,熔渣黏度都低于0.5Pa.s;当SiO2质量分数增加到10%,渣样的高温黏度开始显著降低,温度高于1 440℃时,黏度值低于0.2Pa.s.随着SiO2含量的增加,熔渣的碱度逐渐降低,破坏了原来熔渣的大网状结构,熔渣的黏度明显降低.渣系的黏流活化能变化趋势与渣样的黏度值变化趋势一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号