首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 50 毫秒
1.
本文主要讨论约束集值优化问题Benson真有效解的高阶最优性条件。在广义凸性条件下,获得集值映射广义高阶上图导数的重要性质和约束集值优化问题的高阶最优性充分与必要条件,所获得的结果推广了文献中的相应结果。  相似文献   

2.
研究集值向量优化问题在标量集值Lagrange映射下鞍点的性质. 在近似锥 次类凸假设下, 证明了集值优化问题严有效解为鞍点的充分和必要条件. 利用标量集值Lagrange映射建立了集值优化问题的对偶模型, 并得到严有效性下的弱对偶和强对偶定理.  相似文献   

3.
对目标映射和约束映射均为集值映射的向量优化问题(VP),引入近似Benson真有效解、近似Benson真有效元概念,推广了戎卫东与马毅提出的ε-真有效解,并给出例子予以说明,考虑了集值映射向量优化问题的近似Benson真有效解。在邻近锥次似凸假设条件下,通过数值优化问题的近似解来刻画其近似Benson真有效解,并得到了如下的结论:x0,(y0)是问题(VP)的近似Benson真有效元当且仅当它是对应于问题(VP)的标量化问题(Pμ)的-εσ-C(μ)-次最优元,其必要充分条件具有相同的误差,推广和改进了已有结果。  相似文献   

4.
在线性赋范空间中引入了集值映射的广义梯度,在一定条件下通过凸集分离定理证明了此广义梯度的存在性。  相似文献   

5.
首先,给出了一些必要的基本概念和重要引理.其次,讨论了高阶广义切集的一些重要性质.最后,利用这些性质和Gerstewitz非凸分离泛函,在目标映射以及约束映射没有任何凸性假设的条件下,获得了带广义不等式约束的集值优化问题弱Benson真有效解的高阶必要和充分最优性条件.同时,给出例子说明了所获得的结果推广了文献中的相应...  相似文献   

6.
集值映射向量优化问题的严有效性   总被引:6,自引:0,他引:6  
将严有效性概念推广到集值映射向量优化问题,并较为系统地研究了它的性质,获得了有关标量化、 Lagrange 乘子、 Lagrange 型对偶及严有效点集的连通性、稠密性等方面的几个结果  相似文献   

7.
集值映射向量优化问题的强有效性   总被引:9,自引:1,他引:9  
引进并较为系统地研究集值映射向量优化问题的强有效性,获得了包括标量化、Lagrange乘子、Lagrange型对偶及强有效点集的连通性等方面的几个结果  相似文献   

8.
目的研究局部凸空间中集值优化超有效解与鞍点之间的关系问题。方法通过广义鞍点的性质并结合择一定理,得到有关充分条件和必要条件。结果得到广义鞍点的一个锥分离性质,并且建立了近似锥-次类凸集值向量优化问题超有效解为广义鞍点的条件。结论其结果深化和丰富了最优化理论的内容。  相似文献   

9.
在内部锥类凸集值映射的假设下,证明了集值优化问题的Benson真有效解与其相应的标量化问题的最优解和无约束向量极小化问题的Benson真有效解的等价性.  相似文献   

10.
对向量集值映射引入锥类凸的概念,并给出锥类凸集值映射的一个等价刻划和逼近锥的几个重要性质。利用这些概念与结果,对赋范线性空间中带集值映射的向量优化问题的有效点集和Benson真有效点集建立了两个标量化定理。据此,证明了这两个集合的连通性。  相似文献   

11.
在局部凸拓扑向量空间中,建立几乎次类凸集值映射向量最优化问题关于基的Henig真有效解的标量化定理,Lagrange乘子定理及其对偶性定理.本文引进了关于基的Henig鞍点,用它将关于基的Henig真有效性特征化.  相似文献   

12.
在可分距离空间的框架下给出了Benson真有效点的标量化定理,再把此定理运用于几乎次类凸集值映射向量优化问题中,得到Benson真有效解的标量化定理、Lagrange乘数定理和对偶性定理.  相似文献   

13.
本简报指出:若是部凸空间中存在一个凸锥它既具紧基,又具非空内部,则该局部凸空间必为有限维的.利用局部凸空间的对偶理论,在不对序锥附近加其他条件的前提下,我们获得了Benson真有效点的对偶特征.由此,我们给出了几乎锥次凸状集值映照的向量优化问题的Benson真极小元的标量化定理.  相似文献   

14.
目的 研究拓扑向量空间中集值映射优化问题及Lagrangian型对偶问题。方法将单值映射的广义次类凸概念推广到集值映射,在拓朴向量空间中建立了择一定理,通过择一定理研究集值映射优化问题的最优性必要条件,并定义了Lagrangian型对偶问题。结果获得了集值映射优化问题的最优性必要条件和对偶定理。结论其结果深化和丰富了最优化理论的内容。  相似文献   

15.
次微分意义下集值映射优化问题的最优性条件   总被引:1,自引:4,他引:1  
在实赋范空间中,研究集值向量优化问题解的最优性条件。给出了锥凸集值映射次梯度和次微分的概念,通过锥凸集值映射的上图象的条件锥定义了锥凸集值映射的条件上导数,研究了次微分的性质。在次微分意义下,获得了集值映射优化的弱极小元的最优性条件。  相似文献   

16.
利用与仿射上导数相关的向量变分不等式的真有效性,对局部凸拓扑向量空间中的集值优化问题的Henig有效性、超有效性、锥超有效性等给出了一些充分、必要条件,从而推广了一些已知的相关结论.  相似文献   

17.
在超有意义下建立了广义锥次凸集值函数松弛鞍点无存在的非导数型Kuhn-Tucker条件,并证明了这一条件的充分性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号