首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A M Dranginis 《Nature》1990,347(6294):682-685
The mating-type locus (MAT) encodes several DNA-binding proteins, which determine the three cell types of Saccharomyces cerevisiae: the a and alpha haploid cell types, and the a/alpha diploid cell type. One of the products of MAT, alpha 2, functions in two cell types. In alpha cells, alpha 2 represses the a-specific genes by binding to the operator as a dimer. In a/alpha diploid cells, alpha 2 acts with a1, a product of the other MAT allele, to repress a different set of genes, the haploid-specific genes. Until now, the nature of the interaction between a1 and alpha 2 was not known, although it had been suggested that alpha 2 may form a heterodimer with a1. I show, by using proteins synthesized in vitro, that a1 and alpha 2 bind the operator of a haploid-specific gene as a heterodimer. The ability of alpha 2 to form both homodimers and heterodimers with a1, each with a different DNA-binding specificity, explains the dual regulatory functions of alpha 2. This is the first example of regulation by heterodimerization among homeobox-containing proteins, a class that includes proteins responsible for the specification of segment identity in Drosophila, mammals and other eukaryotes.  相似文献   

2.
Gene duplication and the adaptive evolution of a classic genetic switch   总被引:2,自引:0,他引:2  
Hittinger CT  Carroll SB 《Nature》2007,449(7163):677-681
  相似文献   

3.
Kellis M  Birren BW  Lander ES 《Nature》2004,428(6983):617-624
Whole-genome duplication followed by massive gene loss and specialization has long been postulated as a powerful mechanism of evolutionary innovation. Recently, it has become possible to test this notion by searching complete genome sequence for signs of ancient duplication. Here, we show that the yeast Saccharomyces cerevisiae arose from ancient whole-genome duplication, by sequencing and analysing Kluyveromyces waltii, a related yeast species that diverged before the duplication. The two genomes are related by a 1:2 mapping, with each region of K. waltii corresponding to two regions of S. cerevisiae, as expected for whole-genome duplication. This resolves the long-standing controversy on the ancestry of the yeast genome, and makes it possible to study the fate of duplicated genes directly. Strikingly, 95% of cases of accelerated evolution involve only one member of a gene pair, providing strong support for a specific model of evolution, and allowing us to distinguish ancestral and derived functions.  相似文献   

4.
S D Porter  M Smith 《Nature》1986,320(6064):766-768
  相似文献   

5.
6.
CtBP2(E1AC-terminal binding protein 2)作为辅阻遏物与多种转录因子联系而参与到很多生物过程中,如细胞分化、凋亡、发育和肿瘤发生等,然而其中许多作用机制尚不明了.为了对CtBP2进行深入研究,利用高通量酵母双杂交技术,以人CtBP2为诱饵,与含有1000个人肝基因克隆的酵母双杂交文库进行接合筛选获得了一个与它相互作用的猎物蛋白CCNH(Cyclin H).通过GST-pull down、免疫共沉淀和亚细胞共定位等实验进一步证明了这两个蛋白在体外和体内的相互作用.  相似文献   

7.
The glyoxylate cycle is required for fungal virulence.   总被引:49,自引:0,他引:49  
M C Lorenz  G R Fink 《Nature》2001,412(6842):83-86
Candida albicans, a normal component of the mammalian gastrointestinal flora, is responsible for most fungal infections in immunosuppressed patients. Candida is normally phagocytosed by macrophages and neutrophils, which secrete cytokines and induce hyphal development in this fungus. Neutropenic patients, deficient in these immune cells, are particularly susceptible to systemic candidiasis. Here we use genome-wide expression profiles of the related yeast Saccharomyces cerevisiae to obtain a signature of the events that take place in the fungus on ingestion by a mammalian macrophage. Live S. cerevisiae cells isolated from the phagolysosome are induced for genes of the glyoxylate cycle, a metabolic pathway that permits the use of two-carbon compounds as carbon sources. In C. albicans, phagocytosis also upregulates the principal enzymes of the glyoxylate cycle, isocitrate lyase (ICL1) and malate synthase (MLS1). Candida albicans mutants lacking ICL1 are markedly less virulent in mice than the wild type. These findings in fungi, in conjunction with reports that isocitrate lyase is both upregulated and required for the virulence of Mycobacterium tuberculosis, demonstrate the wide-ranging significance of the glyoxylate cycle in microbial pathogenesis.  相似文献   

8.
A T L?rincz  S I Reed 《Nature》1984,307(5947):183-185
In the budding yeast, Saccharomyces cerevisiae, division is controlled in response to nutrient limitation and in preparation for conjugation. Cells deprived of an essential nutrient or responding to mating pheromones cease division and become synchronous in the G1 interval, apparently constrained from completing a critical event. This event has been given the operational designation of 'start'. We have isolated a large number of start mutations which confer on S. cerevisiae cells a conditional inability to complete start (Fig. 1) presumably because they define genes which must be expressed for the start event to be successfully completed. We have described the isolation on plasmids of one of the start genes, CDC28, by genetic complementation and initial characterization of its product. We now describe the DNA sequence of the gene CDC28.  相似文献   

9.
J Hicks  J N Strathern  A J Klar 《Nature》1979,282(5738):478-473
A functional copy of the alpha mating type gene of Saccharomyces cerevisiae has been cloned by transformation in yeast. Using the Southern Blotting procedure it has been shown that three distinct genetic loci implicated in mating type interconversion (HML, HMR and MAT) contain sequences homologous to the clone fragment. The restriction fragment associated with each locus exhibits a characteristic size which can be correlated with the mating type allele present at that locus. The characteristic size difference between the a and alpha genetic elements made it possible to demonstrate that the homothallic interconversion of mating types in this yeast occurs by DNA rearrangement as proposed in the 'cassette hypothesis'.  相似文献   

10.
Y Sugisaki  N Gunge  K Sakaguchi  M Yamasaki  G Tamura 《Nature》1983,304(5925):464-466
K1 killer toxin secreted by the K1 strain of Saccharomyces cerevisiae, has been well characterized. It is a simple protein of molecular weight (MW) 11,470 (ref. 3), encoded by a double-stranded, linear RNA plasmid, called M RNA, of MW 1.1-1.7 x 10(6) (refs 4-6). It is lethal to sensitive Saccharomyces cerevisiae which does not carry M RNA. Leakage of K+ and ATP is the first distinct response in sensitive cells, and the toxic action is thought to be due to its action as a protonophore or K+ ionophore. Recently, a further killer toxin has been found in Kluyveromyces lactis IFO 1267, and it is associated with the presence of the double-stranded linear DNA plasmids, pGK1-1 (MW 5.4 x 10(6)) and pGK1-2 (MW 8.4 x 10(6)). It has been shown, by curing pGK1-1 or deletion mapping, that the structural gene for the killer toxin and immunity-determining gene reside on the smaller plasmid. Moreover, the plasmids could be transferred from K. lactis to S. cerevisiae by protoplast fusion and protoplast transformation. As the K. lactis toxin is encoded by a DNA plasmid and has a relatively wider action spectrum than K1 killer toxin, the mode of action of the toxin is highly interesting. Here we report that K. lactis toxin inhibits adenylate cyclase in sensitive yeast cells and brings about arrest of the cells at the G1 stage.  相似文献   

11.
Tomoyasu Y  Wheeler SR  Denell RE 《Nature》2005,433(7026):643-647
The two pairs of wings that are characteristic of ancestral pterygotes (winged insects) have often undergone evolutionary modification. In the fruitfly, Drosophila melanogaster, differences between the membranous forewings and the modified hindwings (halteres) depend on the Hox gene Ultrabithorax (Ubx). The Drosophila forewings develop without Hox input, while Ubx represses genes that are important for wing development, promoting haltere identity. However, the idea that Hox input is important to the morphologically specialized wing derivatives such as halteres, and not the more ancestral wings, requires examination in other insect orders. In beetles, such as Tribolium castaneum, it is the forewings that are modified (to form elytra), while the hindwings retain a morphologically more ancestral identity. Here we show that in this beetle Ubx 'de-specializes' the hindwings, which are transformed to elytra when the gene is knocked down. We also show evidence that elytra result from a Hox-free state, despite their diverged morphology. Ubx function in the hindwing seems necessary for a change in the expression of spalt, iroquois and achaete-scute homologues from elytron-like to more typical wing-like patterns. This counteracting effect of Ubx in beetle hindwings represents a previously unknown mode of wing diversification in insects.  相似文献   

12.
Ongoing efforts within synthetic and systems biology have been directed towards the building of artificial computational devices using engineered biological units as basic building blocks. Such efforts, inspired in the standard design of electronic circuits, are limited by the difficulties arising from wiring the basic computational units (logic gates) through the appropriate connections, each one to be implemented by a different molecule. Here, we show that there is a logically different form of implementing complex Boolean logic computations that reduces wiring constraints thanks to a redundant distribution of the desired output among engineered cells. A practical implementation is presented using a library of engineered yeast cells, which can be combined in multiple ways. Each construct defines a logic function and combining cells and their connections allow building more complex synthetic devices. As a proof of principle, we have implemented many logic functions by using just a few engineered cells. Of note, small modifications and combination of those cells allowed for implementing more complex circuits such as a multiplexer or a 1-bit adder with carry, showing the great potential for re-utilization of small parts of the circuit. Our results support the approach of using cellular consortia as an efficient way of engineering complex tasks not easily solvable using single-cell implementations.  相似文献   

13.
14.
Cells of the yeast, Saccharomyces cerevisiae, containing disruptions of either of two genes that are members of the ras oncogene family are viable, but haploid yeast spores carrying disruptions of both genes fail to grow.  相似文献   

15.
Homoeotic genes in the bithorax and Antennapedia complexes of Drosophila melanogaster appear to specify the developmental fate of segments of the fly. Some of these genes (Ultrabithorax, Antennapedia and fushi tarazu) share homology due to their conservation of a 'homoeo domain'1,2 consisting of 60 amino acids. Cross-hybridization and cloning experiments show that the homoeo domain is conserved in a frog (Xenopus laevis) gene expressed in early development and may also be present in earthworm, beetle, chicken, mouse and human genomes. The extreme conservation found in the amino acid sequences between the Drosophila and Xenopus domains suggests that the domain has a vital function in the control of early development. Here we report the results of a search made in the Dayhoff sequence bank, which reveals a lesser but apparently significant homology between the homoeo domain and the amino acids coded from parts of the a 1 and alpha 2 mating type genes of the yeast Saccharomyces cerevisiae.  相似文献   

16.
根据酵母和人类在固醇代谢机制方面的高度保守性,通过构建不同的麦角固醇合成相关基凼缺失菌株建立了一种新的基于酵母菌的降胆固醇药物筛选模型,并以作用机理明确的药物洛伐他汀和吉非罗其作为对照标准,探索了本模型对降胆固醇药物的筛选条件.进而利用本模型对临床报道有降胆固醇作用的传统中药:丹参、山楂以及成分明确、疗效显著的复方亚油酸胶囊和月见草油胶丸进行了筛选试验.结果验证了利用本模型筛选药物的可行性,并初步分析了上述药物可能的作用机理.  相似文献   

17.
A M Miller  V L MacKay  K A Nasmyth 《Nature》1985,314(6012):598-603
The MAT alpha 2 protein of budding yeast represses a set of genes; if the MATa1 protein is also present, a further set of genes is repressed. DNA sequence comparisons reveal a 20-base pair 'operator' sequence that is present in genes repressed by a1/alpha 2. A related, but distinct, sequence is found in genes repressed by alpha 2 alone.  相似文献   

18.
S L Forsburg  P Nurse 《Nature》1991,351(6323):245-248
In rapidly growing cells of the budding yeast Saccharomyces cerevisiae, the cell cycle is regulated chiefly at Start, just before the G1-S boundary, whereas in the fission yeast Schizosaccharomyces pombe, the cycle is predominantly regulated at G2-M. Both control points are present in both yeasts, and both require the p34cdc2 protein kinase. At G2-M, p34cdc2 kinase activity in S. pombe requires a B-type cyclin in a complex with p34cdc2; this complex is the same as MPF (maturation promoting factor). The p34cdc2 activity at the G1-S transition in S. cerevisiae may be regulated by a similar cyclin complex, using one of the products of a new class of cyclin genes (CLN1, CLN2 and WHI1 (DAF1/CLN3)). At least one is required for progression through the G1-S phase, and deletion of all three leads to G1 arrest. WHI1 was isolated as a dominant allele causing budding yeast cells to divide at a reduced size and was later independently identified as DAF1, a dominant allele of which rendered the cells refractory to the G1-arrest induced by the mating pheromone alpha-factor. The dominant alleles are truncations thought to yield proteins of increased stability, and the cells are accelerated through G1. Without WHI1 function, the cells are hypersensitive to alpha-factor, enlarged and delayed in G1. Heretofore, this G1-class of cyclins has not been identified in other organisms. We have isolated a G1-type cyclin gene called puc1+ from S. pombe, using a functional assay in S. cerevisiae. Expression of puc1+ in S. pombe indicates that it has a cyclin-like role in the fission yeast distinct from the role of the B-type mitotic cyclin.  相似文献   

19.
血小板生成素在毕赤酵母中的表达   总被引:2,自引:0,他引:2  
以人胎肝cDNA文库为模板,用PCR和DNA重组技术,将TPOcDNA克隆到pGEM  相似文献   

20.
Lolle SJ  Victor JL  Young JM  Pruitt RE 《Nature》2005,434(7032):505-509
A fundamental tenet of classical mendelian genetics is that allelic information is stably inherited from one generation to the next, resulting in predictable segregation patterns of differing alleles. Although several exceptions to this principle are known, all represent specialized cases that are mechanistically restricted to either a limited set of specific genes (for example mating type conversion in yeast) or specific types of alleles (for example alleles containing transposons or repeated sequences). Here we show that Arabidopsis plants homozygous for recessive mutant alleles of the organ fusion gene HOTHEAD (HTH) can inherit allele-specific DNA sequence information that was not present in the chromosomal genome of their parents but was present in previous generations. This previously undescribed process is shown to occur at all DNA sequence polymorphisms examined and therefore seems to be a general mechanism for extra-genomic inheritance of DNA sequence information. We postulate that these genetic restoration events are the result of a template-directed process that makes use of an ancestral RNA-sequence cache.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号