首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dillingham MS  Spies M  Kowalczykowski SC 《Nature》2003,423(6942):893-897
Escherichia coli RecBCD is a heterotrimeric helicase/nuclease that catalyses a complex reaction in which double-strand breaks in DNA are processed for repair by homologous recombination. For some time it has been clear that the RecB subunit possesses a 3' --> 5' DNA helicase activity, which was thought to drive DNA translocation and unwinding in the RecBCD holoenzyme. Here we show that purified RecD protein is also a DNA helicase, but one that possesses a 5' --> 3' polarity. We also show that the RecB and RecD helicases are both active in intact RecBCD, because the enzyme remains capable of processive DNA unwinding when either of these subunits is inactivated by mutation. These findings point to a bipolar translocation model for RecBCD in which the two DNA helicases are complementary, travelling with opposite polarities, but in the same direction, on each strand of the antiparallel DNA duplex. This bipolar motor organization helps to explain various biochemical properties of RecBCD, notably its exceptionally high speed and processivity, and offers a mechanistic insight into aspects of RecBCD function.  相似文献   

2.
Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine   总被引:23,自引:0,他引:23  
Krojer T  Garrido-Franco M  Huber R  Ehrmann M  Clausen T 《Nature》2002,416(6879):455-459
Molecular chaperones and proteases monitor the folded state of other proteins. In addition to recognizing non-native conformations, these quality control factors distinguish substrates that can be refolded from those that need to be degraded. To investigate the molecular basis of this process, we have solved the crystal structure of DegP (also known as HtrA), a widely conserved heat shock protein that combines refolding and proteolytic activities. The DegP hexamer is formed by staggered association of trimeric rings. The proteolytic sites are located in a central cavity that is only accessible laterally. The mobile side-walls are constructed by twelve PDZ domains, which mediate the opening and closing of the particle and probably the initial binding of substrate. The inner cavity is lined by several hydrophobic patches that may act as docking sites for unfolded polypeptides. In the chaperone conformation, the protease domain of DegP exists in an inactive state, in which substrate binding in addition to catalysis is abolished.  相似文献   

3.
RecBCD enzyme is a processive DNA helicase and nuclease that participates in the repair of chromosomal DNA through homologous recombination. We have visualized directly the movement of individual RecBCD enzymes on single molecules of double-stranded DNA (dsDNA). Detection involves the optical trapping of solitary, fluorescently tagged dsDNA molecules that are attached to polystyrene beads, and their visualization by fluorescence microscopy. Both helicase translocation and DNA unwinding are monitored by the displacement of fluorescent dye from the DNA by the enzyme. Here we show that unwinding is both continuous and processive, occurring at a maximum rate of 972 +/- 172 base pairs per second (0.30 microm s(-1)), with as many as 42,300 base pairs of dsDNA unwound by a single RecBCD enzyme molecule. The mean behaviour of the individual RecBCD enzyme molecules corresponds to that observed in bulk solution.  相似文献   

4.
Taylor AF  Smith GR 《Nature》2003,423(6942):889-893
Helicases are molecular motors that move along and unwind double-stranded nucleic acids. RecBCD enzyme is a complex helicase and nuclease, essential for the major pathway of homologous recombination and DNA repair in Escherichia coli. It has sets of helicase motifs in both RecB and RecD, two of its three subunits. This rapid, highly processive enzyme unwinds DNA in an unusual manner: the 5'-ended strand forms a long single-stranded tail, whereas the 3'-ended strand forms an ever-growing single-stranded loop and short single-stranded tail. Here we show by electron microscopy of individual molecules that RecD is a fast helicase acting on the 5'-ended strand and RecB is a slow helicase acting on the 3'-ended strand on which the single-stranded loop accumulates. Mutational inactivation of the helicase domain in RecB or in RecD, or removal of the RecD subunit, altered the rates of unwinding or the types of structure produced, or both. This dual-helicase mechanism explains how the looped recombination intermediates are generated and may serve as a general model for highly processive travelling machines with two active motors, such as other helicases and kinesins.  相似文献   

5.
Neale MJ  Pan J  Keeney S 《Nature》2005,436(7053):1053-1057
DNA double-strand breaks (DSBs) with protein covalently attached to 5' strand termini are formed by Spo11 to initiate meiotic recombination. The Spo11 protein must be removed for the DSB to be repaired, but the mechanism for removal is unclear. Here we show that meiotic DSBs in budding yeast are processed by endonucleolytic cleavage that releases Spo11 attached to an oligonucleotide with a free 3'-OH. Two discrete Spo11-oligonucleotide complexes were found in equal amounts, differing with respect to the length of the bound DNA. We propose that these forms arise from different spacings of strand cleavages flanking the DSB, with every DSB processed asymmetrically. Thus, the ends of a single DSB may be biochemically distinct at or before the initial processing step-much earlier than previously thought. SPO11-oligonucleotide complexes were identified in extracts of mouse testis, indicating that this mechanism is evolutionarily conserved. Oligonucleotide-topoisomerase II complexes were also present in extracts of vegetative yeast, although not subject to the same genetic control as for generating Spo11-oligonucleotide complexes. Our findings suggest a general mechanism for repair of protein-linked DSBs.  相似文献   

6.
Dong C  Huang F  Deng H  Schaffrath C  Spencer JB  O'Hagan D  Naismith JH 《Nature》2004,427(6974):561-565
Fluorine is the thirteenth most abundant element in the earth's crust, but fluoride concentrations in surface water are low and fluorinated metabolites are extremely rare. The fluoride ion is a potent nucleophile in its desolvated state, but is tightly hydrated in water and effectively inert. Low availability and a lack of chemical reactivity have largely excluded fluoride from biochemistry: in particular, fluorine's high redox potential precludes the haloperoxidase-type mechanism used in the metabolic incorporation of chloride and bromide ions. But fluorinated chemicals are growing in industrial importance, with applications in pharmaceuticals, agrochemicals and materials products. Reactive fluorination reagents requiring specialist process technologies are needed in industry and, although biological catalysts for these processes are highly sought after, only one enzyme that can convert fluoride to organic fluorine has been described. Streptomyces cattleya can form carbon-fluorine bonds and must therefore have evolved an enzyme able to overcome the chemical challenges of using aqueous fluoride. Here we report the sequence and three-dimensional structure of the first native fluorination enzyme, 5'-fluoro-5'-deoxyadenosine synthase, from this organism. Both substrate and products have been observed bound to the enzyme, enabling us to propose a nucleophilic substitution mechanism for this biological fluorination reaction.  相似文献   

7.
Lu D  Searles MA  Klug A 《Nature》2003,426(6962):96-100
  相似文献   

8.
H Brandstetter  J S Kim  M Groll  R Huber 《Nature》2001,414(6862):466-470
The degradation of cytosolic proteins is carried out predominantly by the proteasome, which generates peptides of 7-9 amino acids long. These products need further processing. Recently, a proteolytic system was identified in the model organism Thermoplasma acidophilum that performs this processing. The hexameric core protein of this modular system, referred to as tricorn protease, is a 720K protease that is able to assemble further into a giant icosahedral capsid, as determined by electron microscopy. Here, we present the crystal structure of the tricorn protease at 2.0 A resolution. The structure reveals a complex mosaic protein whereby five domains combine to form one of six subunits, which further assemble to form the 3-2-symmetric core protein. The structure shows how the individual domains coordinate the specific steps of substrate processing, including channelling of the substrate to, and the product from, the catalytic site. Moreover, the structure shows how accessory protein components might contribute to an even more complex protein machinery that efficiently collects the tricorn-released products.  相似文献   

9.
Yamasaki M  Li W  Johnson DJ  Huntington JA 《Nature》2008,455(7217):1255-1258
Repeating intermolecular protein association by means of beta-sheet expansion is the mechanism underlying a multitude of diseases including Alzheimer's, Huntington's and Parkinson's and the prion encephalopathies. A family of proteins, known as the serpins, also forms large stable multimers by ordered beta-sheet linkages leading to intracellular accretion and disease. These 'serpinopathies' include early-onset dementia caused by mutations in neuroserpin, liver cirrhosis and emphysema caused by mutations in alpha(1)-antitrypsin (alpha(1)AT), and thrombosis caused by mutations in antithrombin. Serpin structure and function are quite well understood, and the family has therefore become a model system for understanding the beta-sheet expansion disorders collectively known as the conformational diseases. To develop strategies to prevent and reverse these disorders, it is necessary to determine the structural basis of the intermolecular linkage and of the pathogenic monomeric state. Here we report the crystallographic structure of a stable serpin dimer which reveals a domain swap of more than 50 residues, including two long antiparallel beta-strands inserting in the centre of the principal beta-sheet of the neighbouring monomer. This structure explains the extreme stability of serpin polymers, the molecular basis of their rapid propagation, and provides critical new insights into the structural changes which initiate irreversible beta-sheet expansion.  相似文献   

10.
W S Somers  S E Phillips 《Nature》1992,359(6394):387-393
The crystal structure of the met repressor-operator complex shows two dimeric repressor molecules bound to adjacent sites 8 base pairs apart on an 18-base-pair DNA fragment. Sequence specificity is achieved by insertion of double-stranded antiparallel protein beta-ribbons into the major groove of B-form DNA, with direct hydrogen-bonding between amino-acid side chains and the base pairs. The repressor also recognizes sequence-dependent distortion or flexibility of the operator phosphate backbone, conferring specificity even for inaccessible base pairs.  相似文献   

11.
12.
Crystal structure of chaperone protein PapD reveals an immunoglobulin fold   总被引:45,自引:0,他引:45  
A Holmgren  C I Br?nden 《Nature》1989,342(6247):248-251
The chaperone protein PapD mediates assembly of pili in Escherichia coli. Its polypeptide chain folds into two immunoglobulin-type domains that are homologous in sequence to the human lymphocyte differentiation antigen Leu-1/CD5.  相似文献   

13.
14.
Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy.  相似文献   

15.
Crystal structure of parallel quadruplexes from human telomeric DNA   总被引:55,自引:0,他引:55  
Parkinson GN  Lee MP  Neidle S 《Nature》2002,417(6891):876-880
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, are fundamental in protecting the cell from recombination and degradation. Disruption of telomere maintenance leads to eventual cell death, which can be exploited for therapeutic intervention in cancer. Telomeric DNA sequences can form four-stranded (quadruplex) structures, which may be involved in the structure of telomere ends. Here we describe the crystal structure of a quadruplex formed from four consecutive human telomeric DNA repeats and grown at a K(+) concentration that approximates its intracellular concentration. K(+) ions are observed in the structure. The folding and appearance of the DNA in this intramolecular quadruplex is fundamentally different from the published Na(+)-containing quadruplex structures. All four DNA strands are parallel, with the three linking trinucleotide loops positioned on the exterior of the quadruplex core, in a propeller-like arrangement. The adenine in each TTA linking trinucleotide loop is swung back so that it intercalates between the two thymines. This DNA structure suggests a straightforward path for telomere folding and unfolding, as well as ways in which it can recognize telomere-associated proteins.  相似文献   

16.
17.
Pentameric ligand gated ion-channels, or Cys-loop receptors, mediate rapid chemical transmission of signals. This superfamily of allosteric transmembrane proteins includes the nicotinic acetylcholine (nAChR), serotonin 5-HT3, gamma-aminobutyric-acid (GABAA and GABAC) and glycine receptors. Biochemical and electrophysiological information on the prototypic nAChRs is abundant but structural data at atomic resolution have been missing. Here we present the crystal structure of molluscan acetylcholine-binding protein (AChBP), a structural and functional homologue of the amino-terminal ligand-binding domain of an nAChR alpha-subunit. In the AChBP homopentamer, the protomers have an immunoglobulin-like topology. Ligand-binding sites are located at each of five subunit interfaces and contain residues contributed by biochemically determined 'loops' A to F. The subunit interfaces are highly variable within the ion-channel family, whereas the conserved residues stabilize the protomer fold. This AChBP structure is relevant for the development of drugs against, for example, Alzheimer's disease and nicotine addiction.  相似文献   

18.
Members of the small ubiquitin-like modifier (SUMO) family can be covalently attached to the lysine residue of a target protein through an enzymatic pathway similar to that used in ubiquitin conjugation, and are involved in various cellular events that do not rely on degradative signalling via the proteasome or lysosome. However, little is known about the molecular mechanisms of SUMO-modification-induced protein functional transfer. During DNA mismatch repair, SUMO conjugation of the uracil/thymine DNA glycosylase TDG promotes the release of TDG from the abasic (AP) site created after base excision, and coordinates its transfer to AP endonuclease 1, which catalyses the next step in the repair pathway. Here we report the crystal structure of the central region of human TDG conjugated to SUMO-1 at 2.1 A resolution. The structure reveals a helix protruding from the protein surface, which presumably interferes with the product DNA and thus promotes the dissociation of TDG from the DNA molecule. This helix is formed by covalent and non-covalent contacts between TDG and SUMO-1. The non-covalent contacts are also essential for release from the product DNA, as verified by mutagenesis.  相似文献   

19.
Crystal structure of 15-mer DNA duplex containing unpaired bases   总被引:4,自引:0,他引:4  
Errors during DNA replication or repair can lead to the presence of unpaired or inserted bases in the double helix, as well as to mismatched base pairs. So far only structures of the latter type have been characterized by X-ray crystallography. We report here a 3-A crystal structure of DNA 15-mer d(CGCGAAATTTACGCG), which forms a duplex with two unpaired adenine residues looped outside the B-type helix. This arrangement is in disagreement with the nuclear magnetic resonance spectroscopy results for the same 15-mer in solution, indicating polymorphic nature of the structure adopted by this sequence.  相似文献   

20.
Crystal structure of a dUTPase.   总被引:11,自引:0,他引:11  
The enzyme dUTPase catalyses the hydrolysis of dUTP and maintains a low intracellular concentration of dUTP so that uracil cannot be incorporated into DNA. dUTPase from Escherichia coli is strictly specific for its dUTP substrate, the active site discriminating between nucleotides with respect to the sugar moiety as well as the pyrimidine base. Here we report the three-dimensional structure of E. coli dUTPase determined by X-ray crystallography at a resolution of 1.9 A. The enzyme is a symmetrical trimer, and of the 152 amino acid residues in the subunit, the first 136 are visible in the crystal structure. The tertiary structure resembles a jelly-roll fold and does not show the 'classical' nucleotide-binding domain. In the quaternary structure there is a complex interaction between the subunits that may be important in catalysis. This possibility is supported by the location of conserved elements in the sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号