首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Faithful maintenance of the genome is crucial to the individual and the species. Oxidative DNA damage, such as 8-oxo-7,8-dihydroguanine (8-oxoG), poses a major threat to genomic integrity. 8-OxoG can mispair with 2-deoxycytidine 5-triphosphate or with 2-deoxyadenosine triphosphate during DNA replication, forming C8-oxoG and A8-oxoG mispairs. Human MutY is responsible for recognition and removal of the inappropriately inserted adenine in an A8-oxoG mispair. If unrepaired, the A8-oxoG mispairs can result in deleterious C:G to A:T transversions. Human MutY functions in a postreplication repair pathway and is targeted to the newly synthesized daughter strand of DNA for removal of the adenine base. The human MutY protein is targeted to both the mitochondria and the nucleus and associates with the proliferating cell nuclear antigen, apurinic/ apyrimidinic endonuclease 1, replication protein A and mutS homolog 6 proteins. Mutations in the human MutY gene and defective activity of the human MutY protein have been detected in cancer. A direct correlation between defective A8-oxoG repair and increased levels of genomic 8-oxoG has now been established.Received 10 February 2003; received after revision 7 April 2003; accepted 14 April 2003  相似文献   

2.
3.
4.
A bi-allelic polymorphism found in the regulatory region of the human heat shock (HS) protein (HSP) hsp70-1 gene, which comprises an A-->C transversion, 3 bp upstream of the HS element (HSE), has been associated with extended HLA haplotypes. In view of the chaperoning and protective functions of Hsp70, we investigated whether this hsp70-1 bi-allelic polymorphism could modulate the stress response, which may relate to enhanced resistance or susceptibility to certain diseases. We compared the basal and HS-induced HS factor (HSF)-binding activity of the two polymorphic HSEs, hsp70-1 mRNA accumulation and HSP expression in two human Epstein Barr virus (EBV)-transformed B cell lines typed for hsp70-1 promoter alleles. Our results suggest that hsp70-1 promoter polymorphism does not influence HSF-binding activity, hsp70 mRNA accumulation or synthesis in human EBV-transformed B cell lines.  相似文献   

5.
The myelin proteolipid protein (PLP) gene (Plp) encodes the most abundant protein found in myelin from the central nervous system (CNS). Expression of the gene is regulated in a spatiotemporal manner with maximal levels of expression occurring in oligodendrocytes during the active myelination period of CNS development, although other cell types in the CNS as well as in the periphery can express the gene to a much lower degree. In oligodendrocytes, Plp gene expression is tightly regulated. Underexpression or overexpression of the gene has been shown to have adverse effects in humans and other vertebrates. In light of this strict control, this review provides an overview of the current knowledge of Plp gene regulation.Received 4 August 2003; received after revision 17 September 2003; accepted 24 September 2003  相似文献   

6.
The chloroplast is the hallmark organelle of plants. It performs photosynthesis and is therefore required for photoautotrophic plant growth. The chloroplast is the most prominent member of a family of related organelles termed plastids which are ubiquitous in plant cells. Biogenesis of the chloroplast from undifferentiated proplastids is induced by light. The generally accepted endosymbiont hypothesis states that chloroplasts have arisen from an internalized cyanobacterial ancestor. Although chloroplasts have maintained remnants of the ancestral genome (plastome), the vast majority of the genes encoding chloroplast proteins have been transferred to the nucleus. This poses two major challenges to the plant cell during chloroplast biogenesis: First, light and developmental signals must be interpreted to coordinately express genetic information contained in two distinct compartments. This is to ensure supply and stoichiometry of abundant chloroplast components. Second, developing chloroplasts must efficiently import nuclear encoded and cytosolically synthesized proteins. A subset of proteins, including such encoded by the plastome, must further be sorted to the thylakoid compartments for assembly into the photosynthetic apparatus. Received 1 September 2000; received after revision 27 October 2000; accepted 1 November 2000  相似文献   

7.
The Rh (Rhesus) genes encode a family of conserved proteins that share a structural fold of 12 transmembrane helices with members of the major facilitator superfamily. Interest in this family has arisen from the discovery of Rh factor’s involvement in hemolytic disease in the fetus and newborn, and of its homologs widely expressed in epithelial tissues. The Rh factor and Rh-associated glycoprotein (RhAG), with epithelial cousins RhBG and RhCG, form four subgroups conferring upon vertebrates a genealogical commonality. The past decade has heralded significant advances in understanding the phylogenetics, allelic diversity, crystal structure, and biological function of Rh proteins. This review describes recent progress on this family and the molecular insights gleaned from its gene evolution, membrane biology, and disease association. The focus is on its long evolutionary history and surprising structural conservation from prokaryotes to humans, pointing to the importance of its functional role, related to but distinct from ammonium transport proteins.  相似文献   

8.
In this report we describe the main features of the initially determined alcohol dehydrogenase, that of horse liver, relate this to the human enzyme structures and review recent structural studies on mutants and new complexes of the enzymes. We further review the structure of a bacterial alcohol dehydrogenase to arrive at a coherent picture of medium-chain dehydrogenase/reductase alcohol dehydrogenases in general.  相似文献   

9.
The MDR superfamily with ~350-residue subunits contains the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase and many more forms. ADH is a dimeric zinc metalloprotein and occurs as five different classes in humans, resulting from gene duplications during vertebrate evolution, the first one traced to ~500 MYA (million years ago) from an ancestral formaldehyde dehydrogenase line. Like many duplications at that time, it correlates with enzymogenesis of new activities, contributing to conditions for emergence of vertebrate land life from osseous fish. The speed of changes correlates with function, as do differential evolutionary patterns in separate segments. Subsequent recognitions now define at least 40 human MDR members in the Uniprot database (corresponding to 25 genes when excluding close homologues), and in all species at least 10888 entries. Overall, variability is large, but like for many dehydrogenases, subdivided into constant and variable forms, corresponding to household and emerging enzyme activities, respectively. This review covers basic facts and describes eight large MDR families and nine smaller families. Combined, they have specific substrates in metabolic pathways, some with wide substrate specificity, and several with little known functions.  相似文献   

10.
Alcohol dehydrogenase 3 (ADH3) is highly conserved, ubiquitously expressed in mammals and involved in essential cellular pathways. A large active site pocket entails special substrate specificities: shortchain alcohols are poor substrates, while medium-chain alcohols and particularly the glutathione adducts S-hydroxymethylglutathione (HMGSH) and S-nitrosoglutathione (GSNO) are efficiently converted under concomitant use of NAD+/NADH. By oxidation of HMGSH, the spontaneous glutathione adduct of formaldehyde, ADH3 is implicated in the detoxification of formaldehyde. Through the GSNO reductase activity, ADH3 can affect the transnitrosation equilibrium between GSNO and S-nitrosated proteins, arguing for an important role in NO homeostasis. Recent findings suggest that ADH3-mediated GSNO reduction and subsequent product formation responds to redox states in terms of NADH availability and glutathione levels. Finally, a dual function of ADH3 is discussed in view of its potential implications for asthma.  相似文献   

11.
The structure-function relationships of alcohol dehydrogenases from the large family of short-chain dehydrogenase/reductase (SDR) enzymes are described. It seems that while mammals evolved with a medium-chain alcohol dehydrogenase family (MDR), fruit flies utilized an ancestral SDR enzyme. They have modified its function into an efficient alcohol dehydrogenase to aid them in colonizing the emerging ecological niches that appeared around 65 million years ago. To the scientific community, Drosophila has now served as a model organism for quite some time, and Drosophila alcohol dehydrogenase is one of the best-studied members of the SDR family. The availability of a number of high-resolution structures, accurate and thorough kinetic work, and careful theoretical calculations have enabled an understanding of the structure-function relationships of this metal-free alcohol dehydrogenase. In addition, these studies have given rise to various hypotheses about the mechanism of action of this enzyme and contribute to the detailed knowledge of the large superfamily of SDR enzymes.  相似文献   

12.
13.
Zinc plays an important role in the structure and function of many enzymes, including alcohol dehydrogenases (ADHs) of the MDR type (mediumchain dehydrogenases/reductases). Active site zinc participates in catalytic events, and structural site zinc maintains structural stability. MDR-types of ADHs have both of these zinc sites but with some variation in ligands and spacing. The catalytic zinc sites involve three residues with different spacings from two separate protein segments, while the structural zinc sites involve four residues and cover a local segment of the protein chain (Cys97-Cys111 in horse liver class I ADH). This review summarizes properties of both ADH zinc sites, and relates them to zinc sites of proteins in general. In addition, it highlights a separate study of zinc binding peptide variants of the horse liver ADH structural zinc site. The results show that zinc coordination of the free peptide differs markedly from that of the enzyme (one His / three Cys versus four Cys), suggesting that the protein zinc site is in an energetically strained conformation relative to that of the peptide. This finding is a characteristic of an entatic state, implying a functional nature for this zinc site.  相似文献   

14.
15.
16.
Cathepsin A/protective protein [3.4.16.5], carboxypeptidase A, is a lysosomal serine protease with structural homology to yeast (Saccharomyces cerevisiae) carboxypeptidase Y. Cathepsin A is a member of the alpha/beta hydrolase fold family and has been suggested to share a common ancestral relationship with other alpha/beta hydrolase fold enzymes, such as cholinesterases. Several lines of evidence indicate that cathepsin A is a multicatalytic enzyme with deamidase and esterase in addition to carboxypeptidase activities. Cathepsin A was recently identified in human platelets as deamidase. In vitro, it hydrolyzes a variety of bioactive peptide hormones including tachykinins, suggesting that extralysosomal cathepsin A plays a role in regulation of bioactive peptide functions. Recent reports emphasize the lysosomal protective function of cathepsin A rather than its protease function. The protective function of cathepsin A is distinct from its catalytic function. Human lysosomal beta-galactosidase and neuraminidase exist as a high molecular weight enzyme complex, in which there is a 54-kDa glycoprotein termed 'lysosomal protective protein'. Based on cell culture studies, protective protein was found to protect both beta-galactosidase and neuraminidase from intralysosomal proteolysis by forming a multienzyme complex and was shown to be deficient in patients with galactosialidosis, a combined deficiency of beta-galactosidase and neuraminidase. Molecular cloning and gene expression studies have disclosed that protective protein is cathepsin A. The cathepsin A precursor has the potential to restore both beta-galactosidase and neuraminidase activities in fibroblasts from patients with galactosialidosis. Cathepsin A knockout mice showed a phenotype similar to human galactosialidosis and the deficient phenotype found in the mutant mice was corrected by transplanting erythroid precursor cells overexpressing cathepsin A. Collectively, these findings demonstrate the significance of cathepsin A as a key molecule in the onset of galactosialidosis and also highlight the therapeutic potential of the cathepsin A precursor for patients with galactosialidosis.  相似文献   

17.
Coronavirus envelope protein is a small membrane protein and minor component of the virus particles. It plays important roles in virion assembly and morphogenesis, alteration of the membrane permeability of host cells and virus-host cell interaction. Here we review recent progress in characterization of the biochemical properties, membrane topology and functions of the protein. Received 27 February 2007; received after revision 4 April 2007; accepted 26 April 2007  相似文献   

18.
S100A6 protein belongs to the A group of the S100 protein family of Ca2+-binding proteins. It is expressed in a limited number of cell types in adult normal tissues and in several tumor cell types. As an intracellular protein, S100A6 has been implicated in the regulation of several cellular functions, such as proliferation, apoptosis, the cytoskeleton dynamics, and the cellular response to different stress factors. S100A6 can be secreted/released by certain cell types which points to extracellular effects of the protein. RAGE (receptor for advanced glycation endproducts) and integrin β1 transduce some extracellular S100A6’s effects. Dosage of serum S100A6 might aid in diagnosis in oncology.  相似文献   

19.
The intestine specific LI-cadherin differs in its overall structure from classical and desmosomal cadherins by the presence of seven instead of five cadherin repeats and a short cytoplasmic domain. Despite the low sequence similarity, a comparative protein structure analysis revealed that LI-cadherin may have originated from a five-repeat predecessor cadherin by a duplication of the first two aminoterminal repeats. To test this hypothesis, we cloned the murine LI-cadherin gene and compared its structure to that of other cadherins. The intron-exon organization, including the intron positions and phases, is perfectly conserved between repeats 3–7 of LI-cadherin and 1–5 of classical cadherins. Moreover, the genomic structure of the repeats 1–2 and 3–4 is identical for LI-cadherin and highly similar to that of the repeats 1–2 of classical cadherins. These findings strengthen our assumption that LI-cadherin originated from an ancestral cadherin with five domains by a partial gene duplication event.Received 22 December 2003; received after revision 9 February 2004; accepted 27 February 2004  相似文献   

20.
The synthesis of acute-phase protein serum amyloid A (SAA) is largely regulated by inflammation- associated cytokines and a high concentration of circulating SAA may represent an ideal marker for acute and chronic inflammatory diseases. However, SAA is also synthesized in extrahepatic tissues, e.g. human carcinoma metastases and cancer cell lines. An increasing body of in vitro data supports the concept of involvement of SAA in carcinogenesis and neoplastic diseases. Accumulating evidence suggests that SAA might be included in a group of biomarkers to detect a pattern of physiological events that reflect the growth of malignancy and host response. This review is meant to provide a broad overview of the many ways that SAA could contribute to tumour development, and accelerate tumour progression and metastasis, and to gain a better understanding of this acute-phase reactant as a possible link between chronic inflammation and neoplasia. Received 11 June 2008; received after revision 10 July 2008; accepted 28 July 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号