首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Control of cytoplasmic mRNA localization   总被引:1,自引:1,他引:0  
  相似文献   

2.
3.
Non-coding RNA (ncRNA) has been shown to regulate diverse cellular processes and functions through controlling gene expression. Long non-coding RNAs (lncRNAs) act as a competing endogenous RNAs (ceRNAs) where microRNAs (miRNAs) and lncRNAs regulate each other through their biding sites. Interactions of miRNAs and lncRNAs have been reported to trigger decay of the targeted lncRNAs and have important roles in target gene regulation. These interactions form complicated and intertwined networks. Certain lncRNAs encode miRNAs and small nucleolar RNAs (snoRNAs), and may regulate expression of these small RNAs as precursors. SnoRNAs have also been reported to be precursors for PIWI-interacting RNAs (piRNAs) and thus may regulate the piRNAs as a precursor. These miRNAs and piRNAs target messenger RNAs (mRNAs) and regulate gene expression. In this review, we will present and discuss these interactions, cross-talk, and co-regulation of ncRNAs and gene regulation due to these interactions.  相似文献   

4.
In plants, RNA editing is a process for converting a specific nucleotide of RNA from C to U and less frequently from U to C in mitochondria and plastids. To specify the site of editing, the cis-element adjacent to the editing site functions as a binding site for the trans-acting factor. Genetic approaches using Arabidopsis thaliana have clarified that a member of the protein family with pentatricopeptide repeat (PPR) motifs is essential for RNA editing to generate a translational initiation codon of the chloroplast ndhD gene. The PPR motif is a highly degenerate unit of 35 amino acids and appears as tandem repeats in proteins that are involved in RNA maturation steps in mitochondria and plastids. The Arabidopsis genome encodes approximately 450 members of the PPR family, some of which possibly function as trans-acting factors binding the cis-elements of the RNA editing sites to facilitate access of an unidentified RNA editing enzyme. Based on this breakthrough in the research on plant RNA editing, I would like to discuss the possible steps of co-evolution of RNA editing events and PPR proteins. Received 30 September 2005; received after revision 5 November 2005; accepted 28 November 2005  相似文献   

5.
Cell signal-regulated alternative splicing occurs for many genes but the evolutionary origin of the regulatory components and their relationship remain unclear. This review focuses on the alternative splicing components of several systems based on the available bioinformatics data. Eight mammalian RNA elements for signal-regulated splicing were aligned among corresponding sequences from dozens of representative vertebrate species to allow for assessment of the trends in evolutionary changes. Four distinct trends were observed. Four of the elements are highly conserved in bird, reptile and fish species examined (i); two elements can be found in fish but the sequences have been changing till in marsupials or higher mammals (ii); one element is almost exclusively found in mammals with mostly the same sequence (iii); and one element can be found in birds or lower vertebrates but expanded abruptly to have variable numbers of copies in mammals (iv). All examined prototype trans-acting factors and protein kinases emerged earlier than the RNA elements but additional (paralog) factors emerged in the same or later species. Thus, after their emergence mainly in fish or mammals with pre-existing prototype trans-acting factors/kinases, half of the elements have been highly conserved from fish to humans but the other half have evolved differentially with additional trans-acting factors. Their differential evolution likely contributes to the exon- and species/class-specific control of alternative splicing and its regulation by cell signals. The evolvement of a group of mammal-specific components would help relay signals from extracellular stimuli to the splicing machinery and thus contribute to higher proteomic diversity.  相似文献   

6.
ζ-crystallins constitute a family of proteins with NADPH:quinone reductase activity found initially in mammalian lenses but now known to be present in many other organisms and tissues. Few proteins from this family have been characterized, and their function remains unclear. In the present work, ζ-crystallins from human and yeast (Zta1p) were expressed, purified and characterized. Both enzymes are able to reduce ortho-quinones in the presence of NADPH but are not active with 2-alkenals. Deletion of the ZTA1 gene makes yeast more sensitive to menadione and hydrogen peroxide, suggesting a role in the oxidative stress response. The human and yeast enzymes specifically bind to adenine-uracil rich elements (ARE) in RNA, indicating that both enzymes are ARE-binding proteins and that this property has been conserved in ζ-crystallins throughout evolution. This supports a role for ζ-crystallins as trans-acting factors that could regulate the turnover of certain mRNAs. Received 21 February 2007; received after revision 16 April 2007; accepted 23 April 2007 M. R. Fernández, S. Porté: These authors contributed equally to this work.  相似文献   

7.
The distinguishing feature of eukaryotic cells is the segregation of RNA biogenesis and DNA replication in the nucleus, separate from the cytoplasmic machinery for protein synthesis. As a consequence, messenger RNAs (mRNAs) and all cytoplasmic RNAs from nuclear origin need to be transported from their site of synthesis in the nucleus to their final cytoplasmic destination. Nuclear export occurs through nuclear pore complexes (NPCs) and is mediated by saturable transport receptors, which shuttle between the nucleus and cytoplasm. The past years have seen great progress in the characterization of the mRNA export pathway and the identification of proteins involved in this process. A novel family of nuclear export receptors (the NXF family), distinct from the well-characterized family of importin β-like proteins, has been implicated in the export of mRNA to the cytoplasm. Received 23 January 2001; received after revision 12 April 2001; accepted 12 April 2001  相似文献   

8.
9.
Nuclear distribution gene C homolog (NudC) is a highly conserved gene. It has been identified in different species from fungi to mammals. The high degree of conservation, in special in the nudC domain, suggests that they are genes with essential functions. Most of the identified genes in the family have been implicated in cell division through the regulation of cytoplasmic dynein. As for mammalian genes, human NUDC has been implicated in the migration and proliferation of tumor cells and has therefore been considered a possible therapeutic target. There is evidence suggesting that mammalian NudC is also implicated in the regulation of the inflammatory response and in thrombopoiesis. The presence of these other functions not related to the interaction with molecular motors agrees with that these genes and their products are larger in size than their microbial orthologous, indicating that they have evolved to convey additional features.  相似文献   

10.
11.
Hairpin RNA: a secondary structure of primary importance   总被引:4,自引:0,他引:4  
An RNA hairpin is an essential secondary structure of RNA. It can guide RNA folding, determine interactions in a ribozyme, protect messenger RNA (mRNA) from degradation, serve as a recognition motif for RNA binding proteins or act as a substrate for enzymatic reactions. In this review, we have focused on cis-acting RNA hairpins in metazoa, which regulate histone gene expression, mRNA localization and translation. We also review evolution, mechanism of action and experimental use of trans-acting microRNAs, which are coded by short RNA hairpins. Finally, we discuss the existence and effects of long RNA hairpin in animals. We show that several proteins previously recognized to play a role in a specific RNA stem-loop function in cis were also linked to RNA silencing pathways where a different type of hairpin acts in trans. Such overlaps indicate that the relationship between certain mechanisms that recognize different types of RNA hairpins is closer than previously thought. Received 21 November 2005; received after revision 3 January 2006; accepted 11 January 2006  相似文献   

12.
13.
Eukaryotic chromosomes are thought to be organized into a series of discrete higher-order chromatin domains. This organization is believed to be important not only in the compaction of the chromatin fibre, but also in the utilization of genetic information. Critical to this model are the domain boundaries that delimit and segregate the chromosomes into units of independent gene activity. In Drosophila, such domain boundaries have been identified through two different approaches. On the one hand, elements like scs/scs′ and the reiterated binding site for the SU(HW) protein have been characterized through their activity of impeding enhancer-promoter interactions when intercalated between them. Their role of chromatin insulators can protect transgenes from genomic position effects, thereby establishing in dependent functional domains within the chromosome. On the other hand, domain boundaries of the Bithorax complex (BX-C) like Fab-7 and Mcp have been identified through mutational analysis. Mcp and Fab-7, however, may represent a specific class of boundary elements; instead of separating adjacent domains that contain separate structural genes, Mcp and Fab-7 delimit adjacent cis-regulatory domains, each of which interacts independently with their target promoters. In this article, we review the genetic and molecular characteristics of the domain boundaries of the BX-C. We describe how Fab-7 functions to confine activating as well as repressive signals to the flanking regulatory domains. Although the mechanisms by which Fab-7 works as a domain boundary remain an open issue, we provide preliminary evidence that Fab-7 is not a mere insulator like scs or the reiterated binding site for the SU(HW) protein.  相似文献   

14.
RNA interference (RNAi) has been widely adopted to repress specific gene expression and is easily achieved by designing small interfering RNAs (siRNAs) with perfect sequence complementarity to the intended target mRNAs. Although siRNAs direct Argonaute (Ago), a core component of the RNA-induced silencing complex (RISC), to recognize and silence target mRNAs, they also inevitably function as microRNAs (miRNAs) and suppress hundreds of off-targets. Such miRNA-like off-target repression is potentially detrimental, resulting in unwanted toxicity and phenotypes. Despite early recognition of the severity of miRNA-like off-target repression, this effect has often been overlooked because of difficulties in recognizing and avoiding off-targets. However, recent advances in genome-wide methods and knowledge of Ago–miRNA target interactions have set the stage for properly evaluating and controlling miRNA-like off-target repression. Here, we describe the intrinsic problems of miRNA-like off-target effects caused by canonical and noncanonical interactions. We particularly focus on various genome-wide approaches and chemical modifications for the evaluation and prevention of off-target repression to facilitate the use of RNAi with secured specificity.  相似文献   

15.
The present study reports for the first time the involvement of an antimicrobial peptide in the defense reactions of a shrimp infected by a pathogenic Vibrio, Vibrio penaeicida. New members of the penaeidin family were characterized in the shrimp Litopenaeus stylirostris by RT-PCR and RACE-PCR from hemocyte total RNAs, and by mass spectrometry detection and immunolocalization of mature peptides in shrimp hemocytes. In infected shrimps, bacteria and penaeidin distribution colocalized in the gills and the lymphoid organ that represented the main infected sites. Moreover, the shrimp immune response to infection involved massive hemocyte recruitment to infection sites where released penaeidin may participate in the isolation and elimination of the bacteria, We show that the ability of the shrimps to circumvent shrimp infections is closely related to a recovery phase based on the hematopoietic process.Received 25 November 2003; received after revision 8 January 2004; accepted 21 January 2004  相似文献   

16.
Cardiac hypertrophy is an adaptive enlargement of the myocardium in response to altered stress or injury. The cellular responses of cardiomyocytes and non-cardiomyocytes to various signaling pathways should be tightly and delicately regulated to maintain cardiac homeostasis and prevent pathological cardiac hypertrophy. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs that act as regulators of gene expression by promoting the degradation or inhibiting the translation of target mRNAs. Recent studies have revealed expression signatures of miRNAs associated with pathological cardiac hypertrophy and heart failure in humans and mouse models of heart diseases. Increasing evidence indicates that dysregulation of specific miRNAs could alter the cellular responses of cardiomyocytes and non-cardiomyocytes to specific signaling upon the pathological hemodynamic overload, leading to cardiac hypertrophy and heart failure. This review summarizes the cell-autonomous functions of cardiomyocyte miRNAs regulated by different pathways and the roles of non-cardiomyocyte miRNAs in cardiac hypertrophy. The therapeutic effects of a number of miRNAs in heart diseases are also discussed.  相似文献   

17.
18.
Conotoxins and the posttranslational modification of secreted gene products   总被引:11,自引:0,他引:11  
The venoms of predatory cone snails (genus Conus) have yielded a complex library of about 50–100,000 bioactive peptides, each believed to have a specific physiological target (although peptides from different species may overlap in their target specificity). Conus has evolved the equivalent of a drug development strategy that combines the accelerated evolution of toxin sequences with an unprecedented degree of posttranslational modification. Some Conus venom peptide families are the most highly posttranslationally modified classes of gene products known. We review the variety and complexity of posttranslational modifications documented in Conus peptides so far, and explore the potential of Conus venom peptides as a model system for a more general understanding of which secreted gene products may have modified amino acids. Although the database of modified conotoxins is growing rapidly, there are far more questions raised than answers provided about possible mechanisms and functions of posttranslational modifications in Conus. Received 24 June 2005; received after revision 13 August 2005; accepted 19 September 2005  相似文献   

19.
Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized.  相似文献   

20.
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5′ end of the mRNA and scans the 5′ untranslated region (5′UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5′UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5′UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号